Math, asked by Anonymous, 3 months ago

Guys plz help me out of this question. Explain with full solution step-by-step-explanation ​

Attachments:

Answers

Answered by assingh
127

Topic :-

Trigonometry

Given :-

\sf {6sec\alpha -5tan\alpha =k}

\sf {6sec\alpha +ktan\alpha =5}

To Find :-

\sf{k^2}

Solution :-

Subtracting the equations,

\sf {6sec\alpha +ktan\alpha - (6sec\alpha -5tan\alpha) =5-k}

\sf {6sec\alpha +ktan\alpha - 6sec\alpha +5tan\alpha=5-k}

\sf {ktan\alpha +5tan\alpha =5-k}

\sf {tan\alpha(5+k) =5-k}

\sf {tan\alpha=\dfrac{5-k}{5+k}}

\sf{sec\alpha= \sqrt{1+tan^2\alpha}}

\sf {sec\alpha= \sqrt{1+\left(\dfrac{5-k}{5+k}\right)^2}}

\sf {sec\alpha= \sqrt{\left(\dfrac{(5+k)^2+(5-k)^2}{(5+k)^2}\right)}}

\sf {sec\alpha= \sqrt{\left(\dfrac{(50+2k^2)}{(5+k)^2}\right)}}

Put the obtained values in any equation :-

\sf {6sec\alpha -5tan\alpha =k}

\sf {6{\left(\dfrac{ \sqrt{50+2k^2}}{(5+k)}\right)}-5\left(\dfrac{5-k}{5+k}\right ) =k}

\sf {\dfrac{6 {\sqrt{50+2k^2}-5(5-k)}}{5+k}=k}

\sf {6 \sqrt{50+2k^2}-25+5k=k(5+k)}

\sf {6 \sqrt{50+2k^2}-25+5k=5k+k^2}

\sf {6 \sqrt{50+2k^2}=k^2+25}

Square it,

\sf {({6 \sqrt{50+2k^2})}^2={(k^2+25)}^2}

\sf {36(50+2k^{2})=k^{4}+50k^{2}+625}

\sf { 1800+72k^{2}=k^{4}+50k^{2}+625}

\sf{ k^{4}-22k^{2}-1175=0}

Solve it using Quadratic Formula,

\sf { k^2=\dfrac{22 \pm \sqrt{(22)^{2}-4(-1175)}}{2}}

\sf { k^2=\dfrac{22 \pm \sqrt{5184}}{2}}

\sf { k^2=\dfrac{22 \pm 72}{2}}

\sf { k^2={11 \pm 36}}

\sf {k^2=47\:or\:-25}

We will reject the negative value as it can't be negative.

Answer :-

So, value of \sf{k^2} is 47.

Answered by sharanyalanka7
5

Answer:

47

Step-by-step explanation:

note : please kindly refer to above attachment

Attachments:
Similar questions