Math, asked by Anonymous, 9 months ago

guys plz solve this.... .
prove it ​

Attachments:

Answers

Answered by Rajshuklakld
7

To prove:-

 {sec}^{4} \alpha (1 -  {sin}^{4} \alpha ) - 2 {tan}^{2} \alpha  = 1

proof:-Take LHS

 =  {sec}^{4} \alpha  -   \frac{ {sin}^{4} \alpha  }{ {cos}^{4}  \alpha }  - 2 {tan}^{2}  \alpha  \\  =  {sec}^{4} \alpha  -  {tan}^{4} \alpha  - 2 {tan}^{2}  \alpha  \\  we \: know \:  {sec}^{2} \alpha  = 1  +  {tan}^{2} \alpha  \\  = ( {1 +  {tan}^{2} \alpha })^{2}  -  {tan}^{4} \alpha  - 2 {tan}^{2}  \alpha  \\  = 1 +  {tan}^{4} \alpha  + 2 {tan}^{2} \alpha  -  {tan}^{4} \alpha  - 2 {tan}^{2} \alpha  \\ cancelling \: out \: we \: get \\ </strong><strong>LH</strong><strong>S = 1 = </strong><strong>RHS</strong><strong> \\

Hence proved

Similar questions