Math, asked by marshalp810, 11 months ago

guys solv a question ​

Attachments:

Answers

Answered by Muralidh
1

Answer:

\frac{cot^{2} A (sec A - 1)}{1 + sin A} = \frac{sec^{2} A (1 - sin A) }{sec A + 1}

Step-by-step explanation:

LHS = \frac{cot^{2} A (sec A - 1)}{1 + sin A}

= \frac{cot^{2} A (sec A - 1)}{1 + sin A}  \frac{sec A + 1}{sec A + 1}

= \frac{cot^{2} A (sec^{2} A - 1)}{(1 + sin A)(sec A + 1)}

= \frac{cot^{2} A (tan^{2} A)}{(1 + sin A)(sec A + 1)}

= \frac{1}{(1 + sin A)(sec A + 1)}

= \frac{1}{(1 + sin A)(sec A + 1)}  \frac{1 - sin A}{1 - sin A}

= \frac{1 - sin A}{(1 - sin^{2} A (sec A + 1) )}

= \frac{1 - sin A}{cos^{2} A (sec A + 1) )}

= \frac{sec^{2} A (1 - sin A) }{sec A + 1}

= RHS

Hence, LHS = RHS

If you are satisfied, please make me brainliest.

Similar questions