Math, asked by ItsCrazyDaRk02, 10 months ago

guys solve it ...............​

Attachments:

Answers

Answered by Avanimudabagil
3

Answer:

3×2=6

6×3=18

4×3=12

6×2=12

2×3=6

2×6=12 is the answer

Answered by KrisGalaxy
7

Answer:

 \huge \fbox \purple { The Answer is 0 }

Step-by-step explanation:

There are three terms

Let's solve each term one by one.

What we need to do is to just rationalise all the 3 terms.

1st  \: term  \:  =  \frac{3 \sqrt{2} }{ (\sqrt{6} -  \sqrt{3})  } \\   \\  =  >  \frac{3 \sqrt{2} \times ( \sqrt{6}  +  \sqrt{3}  )}{( \sqrt{6} -  \sqrt{3}) \times ( \sqrt{6}   +  \sqrt{3})  }  \\  \\  =  >  \frac{3 \sqrt{12}  + 3 \sqrt{6} }{6 - 3}  \\  \\  =  >  \frac{3 \sqrt{2 \times 2 \times 3}  + 3 \sqrt{2 \times 3} }{3}  \\  \\  =  >  \frac{6 \sqrt{3} + 3 \sqrt{6}  }{3}  \\  \\  =  >  \frac{3(2 \sqrt{3} +  \sqrt{6})  }{3}  \\  \\  =  > 2 \sqrt{3}  +  \sqrt{6}

Now let's solve the second term :-

2nd \:  term  \:  =  >  \frac{4 \sqrt{3} }{ \sqrt{6}  -  \sqrt{2} }  \\  \\  =  >  \frac{4 \sqrt{3} \times ( \sqrt{6} +  \sqrt{2} )  }{( \sqrt{6} -  \sqrt{2} ) \times ( \sqrt{6}   +  \sqrt{2} )}  \\  \\  =  >  \frac{4 \sqrt{18} + 4 \sqrt{6}  }{6 - 2}  \\  \\  =  >  \frac{4 \sqrt{2 \times 3 \times 3} + 4 \sqrt{2 \times 3}  }{4}  \\  \\  =  >  \frac{12 \sqrt{2}  + 4 \sqrt{6} }{4}  \\  \\  =  >  \frac{4(3 \sqrt{2}  +  \sqrt{6} )}{4}  \\  \\  =  > 3 \sqrt{2}  +  \sqrt{6}

Now let's solve the 3 rd term :-

3rd  \: term  \:  =  >  \frac{2 \sqrt{3} }{2 +  \sqrt{6} }  \\  \\  =  >  \frac{2 \sqrt{3} \times (2 -  \sqrt{6})  }{(2 +  \sqrt{6}) \times (2 -  \sqrt{6} ) }  \\  \\  =  >  \frac{4 \sqrt{3} - 2 \sqrt{18}  }{4 - 6}  \\  \\  =  >  \frac{4 \sqrt{3} - 2 \sqrt{2 \times 3 \times 3}  }{ - 2}  \\  \\  =  >  \frac{4 \sqrt{3} - 6 \sqrt{2}  }{ - 2}  \\  \\   =  >   \frac{2(2 \sqrt{3} - 3 \sqrt{2} ) }{ - 2}  \\  \\  =  >  \frac{(2 \sqrt{3} - 3 \sqrt{2}  )}{ - 1}  \\  \\  =  >  - 2 \sqrt{3}  + 3 \sqrt{2}

Now let's put all the three solved term as given in question:-

Therefore:-

 \frac{3 \sqrt{2} }{ \sqrt{6}  -  \sqrt{3} }  -  \frac{4 \sqrt{3} }{ \sqrt{6}  -  \sqrt{2} }  +  \frac{2 \sqrt{3} }{2 +  \sqrt{6} }  \\  \\ now  \: put \: the \: above \: solved \: values \\  \\  =  > 2 \sqrt{3}  +  \sqrt{6}  - (3 \sqrt{2}  +  \sqrt{6} ) + ( - 2 \sqrt{3}  + 3 \sqrt{2} ) \\  \\  =  > 2 \sqrt{3}  +  \sqrt{6}  - 3 \sqrt{2}   -   \sqrt{6}  - 2 \sqrt{3}  + 3 \sqrt{2}  \\  \\  =  > 2 \sqrt{3}  - 2 \sqrt{3}  +  \sqrt{6} -  \sqrt{6}   -  3 \sqrt{2}   + 3 \sqrt{2}  \\  \\  =  > 0 + 0 + 0 \\  =  > 0 \: answer

 \huge \fbox \red {Hence the answer is 0 }

Similar questions