Math, asked by symashah000, 1 month ago

Guys solve this fast​

Attachments:

Answers

Answered by sanjayroy1056
0

Step-by-step explanation:

Ans 2

is a Answer ok

solve it by

Answered by mathdude500
1

\large\underline{\sf{To\:prove - }}

\rm \: {cos}^{2} \bigg(\dfrac{\pi}{8}  \bigg) + {cos}^{2} \bigg(\dfrac{3\pi}{8}  \bigg) + {cos}^{2} \bigg(\dfrac{5\pi}{8}  \bigg) + {cos}^{2} \bigg(\dfrac{7\pi}{8}  \bigg) = 2

\large\underline{\sf{Solution-}}

Consider,

\rm \: {cos}^{2} \bigg(\dfrac{\pi}{8}  \bigg) + {cos}^{2} \bigg(\dfrac{3\pi}{8}  \bigg) + {cos}^{2} \bigg(\dfrac{5\pi}{8}  \bigg) + {cos}^{2} \bigg(\dfrac{7\pi}{8}  \bigg)

We know that,

\rm :\longmapsto\:\dfrac{\pi}{8}  + \dfrac{3\pi}{8}  = \dfrac{\pi}{2}

can be rewritten as

\rm :\longmapsto\:\dfrac{3\pi}{8}  = \dfrac{\pi}{2}  - \dfrac{\pi}{8}

So,

\rm :\longmapsto\:cos\dfrac{3\pi}{8}  = cos \bigg(\dfrac{\pi}{2}  - \dfrac{\pi}{8} \bigg)

\bf :\longmapsto\:cos\dfrac{3\pi}{8}  = sin \dfrac{\pi}{8} -  -  -(1)

Again,

\rm :\longmapsto\:\dfrac{7\pi}{8}  + \dfrac{5\pi}{8}  = \dfrac{3\pi}{2}

can be rewritten as

\rm :\longmapsto\:\dfrac{7\pi}{8}  = \dfrac{3\pi}{2}  - \dfrac{5\pi}{8}

So,

\rm :\longmapsto\:cos\dfrac{7\pi}{8}  = cos \bigg(\dfrac{3\pi}{2}  - \dfrac{5\pi}{8} \bigg)

\bf :\longmapsto\:cos\dfrac{7\pi}{8}  =  -  \: sin \dfrac{5\pi}{8} -  -  -(2)

So, given expression now

\rm :\longmapsto\:{cos}^{2} \bigg(\dfrac{\pi}{8}  \bigg) + {cos}^{2} \bigg(\dfrac{3\pi}{8}  \bigg) + {cos}^{2} \bigg(\dfrac{5\pi}{8}  \bigg) + {cos}^{2} \bigg(\dfrac{7\pi}{8}  \bigg)

can be rewritten as with the help of equation (1) and (2), as

\rm  = \: {cos}^{2} \bigg(\dfrac{\pi}{8}  \bigg) + {sin}^{2} \bigg(\dfrac{\pi}{8}  \bigg) + {cos}^{2} \bigg(\dfrac{5\pi}{8}  \bigg) + {sin}^{2} \bigg(\dfrac{5\pi}{8}  \bigg)

\rm \:  =  \:  \:1 + 1

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \: {sin}^{2}x +  {cos}^{2}x = 1   \bigg \}}

\rm \:  =  \:  \:2

\large{\boxed{\bf{Hence, Proved}}}

Additional Information :-

\red{ \boxed{ \rm{ \: sin(A + B) = sinAcosB + sinBcosA}}}

\red{ \boxed{ \rm{ \: sin(A  -  B) = sinAcosB  -  sinBcosA}}}

\green{ \boxed{ \rm{ \: cos(A + B) = cosAcosB  -  sinAsinB}}}

\green{ \boxed{ \rm{ \: cos(A  -  B) = cosAcosB   +   sinAsinB}}}

\blue{ \boxed{ \rm{ \: tan(A + B) =  \frac{tanA + tanB}{1 - tanAtanB}}}}

\blue{ \boxed{ \rm{ \: tan(A  -  B) =  \frac{tanA  -  tanB}{1  +  tanAtanB}}}}

Similar questions