Math, asked by rekhagarg0055, 3 months ago

guys this is the question...pls solve this​

Attachments:

Answers

Answered by azrarehmani14
2

Answer: 15 hours

Step by step explain:

Let the tap with smaller diameter fills the

tank alone in x hours

Let the tap with larger diameter fills the tank alone in (x – 10) hours.

In 1 hour, the tap with a smaller diameter can fill 1/x part of the tank.

In 1 hour, the tap with larger diameter can fill 1/(x – 10) part of the tank.

The tank is filled up in 75/8 hours.

Thus, in 1 hour the taps fill 8/75 part of the tank.

1/x + 1/(x-10) = 8/75

(x-10) + x / x(x-10) = 8/75

2x – 10/x(x-10) = 8/75

75 (2x-10) = 8(x2-10x)

150x – 750 = 8x2 – 80x

8x2 − 230x + 750 = 0

4x2−115x + 375 = 0

4x2 − 100x −15x + 375 = 0

4x(x−25)−15(x−25) = 0

(4x−15)(x−25) = 0

4x−15 = 0 or x – 25 = 0

x = 15/4 or x = 25

When x = 15/4

Then x – 10 = 15/4 – 10

⇒ 15-40/4

⇒ -25/4

When x = 25 then

x – 10 = 25 – 10 = 15

The tap of smaller diameter can separately fill the tank in 25 hours and the time taken by the larger tap to fill the tank = ( 25 – 10 ) = 15 hours.

Please Mark me Brainliest

Thank you

Answered by Anonymous
5

hey how are you talk in bio if you really not busy

Similar questions