h=2 T cos(theta)/rpg
Check the correctness dimensionally
Answers
Explanation:
Given that,
h= \dfrac{r\rho g}{2s cos\theta}h=
2scosθ
rρg
The units of s,r,g and density
Surface tension S=[M][T]^{-2}S=[M][T]
−2
Radius R= [L]R=[L]
Density \rho=[M][L]^{-3}ρ=[M][L]
−3
Gravity due to acceleration g=[L][T]^{-2}g=[L][T]
−2
h= \dfrac{r\rho g}{S}h=
S
rρg
h= \dfrac{ [L]\times [M][L]^{-3}\times[L][T]^{-2}}{[M][T]^{-2}}h=
[M][T]
−2
[L]×[M][L]
−3
×[L][T]
−2
h=[L^{-1}]h=[L
−1
]
This relation is incorrect.
The correct relation is define as:
h= \dfrac{2scos\theta}{r\rho g}h=
rρg
2scosθ
.....(I)
Now put the all value in equation (I)
h= \dfrac{S}{r\rho g}h=
rρg
S
h= \dfrac{[M][T]^{-2}}{ [L]\times [M][L]^{-3}\times[L][T]^{-2}}h=
[L]×[M][L]
−3
×[L][T]
−2
[M][T]
−2
h=[L]h=[L]
This relation is correct.
Hence, Given relation is incorrect