Math, asked by priyambera1522, 1 year ago

H.C.F and l.C.M of two numbers are 8 and 96 respectively. If one of the two numbers is 24, what is the other number?

Answers

Answered by rohitmaddaly02
19

As we know that,

HCF × LCM = Product of the two numbers

HCF=8

LCM=96

FIRST NO.=24

Substituting in the formula, we get

⇒8 × 96 = 24 × Second no.

⇒(8 × 96) ÷ 24 = Second No.

By solving the equation we get the value as 32,

Therefore the second no. is 32

Hope it helped you ! Cheers

Answered by Tanujrao36
18

Given :-

\sf\bullet { H.C.F\:=\:8}

\sf\bullet{L.C.M\:=\:96}

\sf\bullet{One\:Number\:=\:24}

To find :-

\sf\bullet{Another\:Number}

Formula used !

\bigstar{\boxed{\sf{H.C.F \times L.C.M\:=\: Product\:of\:numbers}}}

Solution:-

\sf{Let\: another\:number\:=\:a}

A.T.Q

\sf{H.C.F \times L.C.M\:=\: Product\:of\:numbers}

\sf{8 \times 96\:=\: 24 \times a}

\sf{a\:=\: \dfrac{8 \times 96}{24}}

\sf{a\:=\: \dfrac{8 \times \cancel{96}}{\cancel{24}}}

\sf{a\:=\: 8 \times 4}

\sf{a\:=\: 32}

Verification:-

__________________________________

\sf{H.C.F \times L.C.M\:=\: Product\:of\:numbers}

\sf{8 \times 96\:=\: 32 \times 24}

\sf{768\:=\:768}

__________________________________

\sf{ \underline{ \underline{So\: another\:number \:is \:32}}}

Similar questions