Math, asked by ripunbardaloi05, 1 month ago

h) Find a vector of magnitude 4 units in the direction of the vector 2î - j +2k^​

Answers

Answered by senboni123456
0

Step-by-step explanation:

Let \:  \:  \vec{a} = 2 \hat{i} -  \hat{j}  + 2\hat{k}

Now,

 \hat{a} =  \frac{2 \hat{i} -  \hat{j}  + 2\hat{k}}{ \sqrt{ {(2)}^{2} +  {( - 1)}^{2} +  {(2)}^{2}   } } \\

 \implies \hat{a} =  \frac{2 \hat{i} -  \hat{j}  + 2\hat{k}}{ \sqrt{ {4 +  1 +  4   } }} \\

 \implies \hat{a} =  \frac{2 \hat{i} -  \hat{j}  + 2\hat{k}}{ \sqrt{ 9 }} \\

 \implies \hat{a} =  \frac{2 \hat{i} -  \hat{j}  + 2\hat{k}}{3} \\

 \implies \hat{a} =   \frac{2}{3}  \hat{i} -  \frac{1}{3}  \hat{j}  +  \frac{2}{3} \hat{k}\\

Required vector

 \implies  \vec{b} = 4\hat{a} =   \frac{8}{3}  \hat{i} -  \frac{4}{3}  \hat{j}  +  \frac{8}{3} \hat{k}\\

Similar questions
Math, 1 month ago