H. Find the range of the function f(x) = cos 2x, when x E R.
Answers
Answered by
0
Answer:
f(x)cosx−cos2x
⇒ we know domain of f(x)willbe−∞<x<∞ and period of cosx=2π
Now f(x)=cosx−cos2x
=f1(x)=−sinx+2cosxsinx
For eritical pointf1(x)=0
−sinx+2cosxsinx=0
sinx(2cosx−1)=0
2cosx−1=0sinx=0
cosx=21x=nπ(nϵz)
x=3π+3nπor3−π+2nπ(nϵz)
Now f1(x)=sinx+sin2x
f11(x)=−cosx+2cos2x
f11(nπ)=−cos(nπ)+2cos(2nπ)
Similar questions