Math, asked by shikha2019, 9 months ago

✨hєч αll вrαínlч guчѕ✌​.

​ Find the second order derivatives of the function:
 {x}^{2}  + 3x + 2
​dσn't ѕpαm✨
fσllσw mє❤​

Answers

Answered by nagsivapreetham007
16

Answer:

The answer is dy/dx=2x+3

d²y/dx²=2

Answered by BrainlyTornado
75

ANSWER:

\sf The \ second  \ order  \ derivative \ of \ {x}^{2} + 3x + 2=2

GIVEN:

  • \sf{x}^{2} + 3x + 2

TO FIND:

  • \sf The \ second  \ order  \ derivative \ of \ {x}^{2} + 3x + 2

EXPLANATION:

\sf Let\ y = {x}^{2} + 3x + 2

Differentiate w.r.t x

\sf  \dfrac{dy}{dx}  = \dfrac{d}{dx}(x^{2} + 3x + 2)

 \boxed {\bold {\large{ \gray{ \dfrac{d}{dx}x^{n} = n {x}^{n - 1} }}}}

 \boxed {\bold {\large{ \gray{ \dfrac{d}{dx}kx = k }}}}

 \boxed {\bold {\large{ \gray{ \dfrac{d}{dx}k =0  }}}}

\sf  \dfrac{dy}{dx}  =2x^{2 - 1} + 3 + 0

\sf  \dfrac{dy}{dx}  =2x^{1} + 3

\sf  \dfrac{dy}{dx}  =2x + 3

Differentiate w.r.t x

\sf  \dfrac{d^{2} y}{dx^{2} }  = \dfrac{d}{dx}(2x +  3)

 \boxed {\bold {\large{ \gray{ \dfrac{d}{dx}kx = k }}}}

 \boxed {\bold {\large{ \gray{ \dfrac{d}{dx}k =0  }}}}

\sf  \dfrac{d^{2} y}{dx^{2} }  = 2 +  0

\sf  \dfrac{d^{2} y}{dx^{2} }  = 2

 \sf The \ second  \ order  \ derivative \ of \ {x}^{2} + 3x + 2= 2

SOME MORE FORMULAE:

\bigstar \boxed {\bold {\large{ \orange{ \dfrac{d}{dx}sin \ \theta =cos \ \theta  }}}}

 \bigstar\boxed {\bold {\large{\blue{ \dfrac{d}{dx}cos\ \theta =-sin \ \theta  }}}}

 \bigstar\boxed {\bold {\large{ \green{ \dfrac{d}{dx}tan \ \theta =sec^2 \ \theta  }}}}

 \bigstar\boxed {\bold {\large{ \orange{ \dfrac{d}{dx}sec \ \theta =sec \ \theta \ tan \ \theta }}}}

 \bigstar\boxed {\bold {\large{ \blue{ \dfrac{d}{dx}cot \ \theta =-cosec^2 \ \theta  }}}}

\bigstar \boxed {\bold {\large{ \green{ \dfrac{d}{dx}cosec \ \theta =-cosec \ \theta \ cot \ \theta }}}}

Similar questions