Math, asked by ItzmysticalAashna, 4 months ago

Hᴇʏ ɢᴜʏs,
\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0 \end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}
TrigonometryTable

Qᴜᴇsᴛɪᴏɴ-:
Eᴠᴀʟᴜᴀᴛᴇ ᴛʜɪs :
I) sɪɴ60°ᴄᴏs30°+sɪɴ30°ᴄᴏs60°
Yᴏᴜ ᴄᴀɴ ᴛᴀᴋᴇ ʜᴇʟᴘ ғʀᴏᴍ ᴛʜᴇ ᴀʙᴏᴠᴇ ᴛᴀʙʟᴇ.

Mɪss Aᴄᴄɪᴅᴇɴᴛᴀʟ ɢᴇɴɪᴜs࿐













​​

Answers

Answered by ShírIey
113

Evaluate:

I) Sin60° Cos30° + Sin30° Cos60°

⠀⠀⠀⠀\dag\;{\underline{\frak{As\;we\;know\;that, \ the \ Trigonometric \ Values\: :}}}\\ \\

  • Sin60° = \sf\dfrac{\sqrt{3}}{2}

  • Cos30° = \sf\dfrac{\sqrt{3}}{2}

  • Sin30° = \sf\dfrac{1}{2}

  • Cos60° = \sf\dfrac{1}{2}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━

\\

\dag\;{\underline{\frak{Substituting \ all \ Values \ :}}}\\ \\

:\implies\Bigg(\sf \dfrac{\sqrt{3}}{2} \Bigg) \Bigg(\dfrac{\sqrt{3}}{2}\Bigg) + \Bigg(\dfrac{1}{2}\Bigg)  \Bigg(\dfrac{1}{2}\Bigg) \\\\\\:\implies\sf \dfrac{(\sqrt{3}) (\sqrt{3})}{2 \times 2} + \dfrac{1}{2 \times 2} \\\\\\:\implies\sf \dfrac{3}{4} + \dfrac{1}{4} \\\\\\:\implies\sf \cancel\dfrac{4}{4}\\\\\\:\implies{\underline{\boxed{\frak{\pink{\:1\:}}}}}

Answered by Anonymous
80

Answer:

SoluTion :-

According to given table

 \tt \:  \sin60 \degree =  \dfrac{ \sqrt{3} }{2}

 \tt \:  \cos \: 30 \degree =  \dfrac{ \sqrt{3} }{2}

 \tt \:  \sin30 \degree =  \dfrac{1}{2}

 \tt \cos \: 30 \degree \:  =  \dfrac{1}{2}

Putting Values

 \big( \dfrac{ \sqrt{3} }{2}  \big)\big( \dfrac{ \sqrt{3} }{2}  \big) +   \big(\dfrac{1}{2} )\big(\dfrac{1}{2} )

 \tt \:  \dfrac{ \sqrt{3 \times  {3} } }{2 \times 2}  +  \dfrac{1 + 1}{2 \times 2}

 \tt \:  \dfrac{3}{4}  +  \dfrac{1}{4}  =  \dfrac{4}{4}

 \huge \bf \:  = 1

Similar questions