Math, asked by ItzmysticalAashna, 3 months ago

Hᴇʏ ɢᴜʏs,

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0 \end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}
TrigonometryTable

Qᴜᴇsᴛɪᴏɴ-:
Eᴠᴀʟᴜᴀᴛᴇ ᴛʜɪs :
I) sɪɴ60°ᴄᴏs30°+sɪɴ30°ᴄᴏs60°
Yᴏᴜ ᴄᴀɴ ᴛᴀᴋᴇ ʜᴇʟᴘ ғʀᴏᴍ ᴛʜᴇ ᴀʙᴏᴠᴇ ᴛᴀʙʟᴇ.

Mɪss Aᴄᴄɪᴅᴇɴᴛᴀʟ ɢᴇɴɪᴜs࿐​

Answers

Answered by Anonymous
14

Answer :-

  • Sin60° Cos30° + Sin30° Cos60° = 1.

Explanation :-

Here, we have to find out the value of this expression.

We know that,

  • Sin60° =  \sf\dfrac{ \sqrt{3} }{2}

  • Cos30° =  \sf\dfrac{ \sqrt{3} }{2}

  • Sin30° =  \sf\dfrac{1}{2}

  • Cos60° =  \sf\dfrac{1}{2}

So, Just Substitute the values.

\implies\sf{\dfrac{ \sqrt{3} }{2} \times \dfrac{ \sqrt{3} }{2}   +  \dfrac{1}{2} \times  \dfrac{1}{2}  } \\  \\

\implies\sf{\dfrac{ \sqrt{3}  \times  \sqrt{3} }{2 \times 2} +  \dfrac{1 \times 1}{2 \times 2}  } \\  \\

\implies\sf{\dfrac{3}{4} +  \dfrac{1}{4}  } \\  \\

\implies\sf{ \dfrac{3 + 1}{4}  } \\  \\

\implies\sf{ \dfrac{4}{4}  } \\  \\

\implies\tt\red{1}. \\  \\

Therefore,

Sin60° Cos30° + Sin30° Cos60° = 1.

Extra Information :-

Some Basic Trigonometry Formulas,

  • sin θ = Opposite Side/Hypotenuse.
  • cos θ = Adjacent Side/Hypotenuse.
  • tan θ = Opposite Side/Adjacent Side.
  • sec θ = Hypotenuse/Adjacent Side.
  • cosec θ = Hypotenuse/Opposite Side.
  • cot θ = Adjacent Side/Opposite Side.

Reciprocal Identities,

  • cosec θ = 1/sin θ.
  • sec θ = 1/cos θ.
  • cot θ = 1/tan θ.
  • sin θ = 1/cosec θ.
  • cos θ = 1/sec θ.
  • tan θ = 1/cot θ.
Similar questions