Math, asked by Anonymous, 5 months ago

Hᴇʏ ɢᴜʏs,
\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0 \end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}






Qᴜᴇsᴛɪᴏɴ-:

Eᴠᴀʟᴜᴀᴛᴇ ᴛʜɪs :
I) sɪɴ60°ᴄᴏs30°+sɪɴ30°ᴄᴏs60°

Yᴏᴜ ᴄᴀɴ ᴛᴀᴋᴇ ʜᴇʟᴘ ғʀᴏᴍ ᴛʜᴇ ᴀʙᴏᴠᴇ ᴛᴀʙʟᴇ.

Harshu ɢᴇɴɪᴜs࿐


[{Spams❌/ Copied ❌/Wrong}answer] = Deleted✔️















​​​

Answers

Answered by ItzBackBencherNaitik
6

\red{\Huge{\underline{\underline{\bf{\maltese \pink{ Answer:}}}}}}

Evaluate:

I) Sin60° Cos30° + Sin30° Cos60°

⠀⠀⠀⠀

\begin{gathered}\dag\;{\underline{\frak{As\;we\;know\;that, \ the \ Trigonometric \ Values\: :}}}\\ \\\end{gathered}

Sin60° = \sf\dfrac{\sqrt{3}}{2}

Cos30° = \sf\dfrac{\sqrt{3}}{2}

Sin30° = \sf\dfrac{1}{2}

Cos60° = \sf\dfrac{1}{2}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━

\begin{gathered}\dag\;{\underline{\frak{Substituting \ all \ Values \ :}}}\\ \\\end{gathered}

\begin{gathered}:\implies\Bigg(\sf \dfrac{\sqrt{3}}{2} \Bigg) \Bigg(\dfrac{\sqrt{3}}{2}\Bigg) + \Bigg(\dfrac{1}{2}\Bigg) \Bigg(\dfrac{1}{2}\Bigg) \\\\\\:\implies\sf \dfrac{(\sqrt{3}) (\sqrt{3})}{2 \times 2} + \dfrac{1}{2 \times 2} \\\\\\:\implies\sf \dfrac{3}{4} + \dfrac{1}{4} \\\\\\:\implies\sf \cancel\dfrac{4}{4}\\\\\\:\implies{\underline{\boxed{\frak{\pink{\:1\:}}}}}\end{gathered}

\boxed{\huge \star{{\mathfrak{\red{☠Naitik \: : hêrë☠}\star}}}}

Answered by sypraveen141004
5

Answer:

1)√3/2.√3/2+1/2.1/2

= √3×√3/4+1×1/4

= 3/4+1/4

=4/4

=1

Step-by-step explanation:

hope it was helpful for more qualified answers please follow me

written by#sypraveen

Attachments:
Similar questions