Physics, asked by Adarshrawat8304, 10 months ago

h ऊंचाई पर गुरुत्वीय त्वरण सतह के मान का 50% रह जाता है यदि पृथ्वी की त्रिज्या 6400 km हो तो h का मान ज्ञात कीजिए |

Answers

Answered by IamIronMan0
1

Answer:

F =mg= G(mM/r^2)

So

g=G(M/r^2)

So gravitational acceleration is inversely proportional to square of distance from Centre of earth.

So

 \frac{g}{ (\frac{g}{2}) }  =  \frac{( \frac{1}{6400  {}^{2}  }) }{ \frac{1}{ {(6400 + h)}^{2} } }  \\  \\  \implies 2 =  \frac{(6400 + h) {}^{2} }{ {6400}^{2} }  \\ h + 6400 = 6400 \sqrt{2}  \\ h = 6400( \sqrt{2}  - 1) \\ h  \approx6400 \times 0.41 421\\ h = 2650 \:  \: kms

Attachments:
Answered by CarliReifsteck
0

The value of h is 2650 km.

Explanation:

Given that,

Radius of earth = 6400 km

g'=\dfrac{g}{2}

We need to calculate the gravitational force at earth surface

Using formula of gravity

F=\dfrac{GmM}{r^2}

mg=\dfrac{GmM}{r^2}

g=\dfrac{GM}{r^2}....(I)

The gravitational force at some height where the gravity is half

g'=\dfrac{GM}{(r+h)^2}

\dfrac{g}{2}=\dfrac{GM}{(r+h)^2}.....(II)

Divided equation (I) by equation (II)

\dfrac{g}{\dfrac{g}{2}}=\dfrac{(r+h)^2}{r^2}

Put the value into the formula

2=\dfrac{(6400+h)^2}{6400^2}

6400+h=6400\sqrt{2}

h=6400\sqrt{2}-6400

h=2650\ km

Hence, The value of h is 2650 km.

Learn more :

Topic : gravitational force

https://brainly.in/question/10075226

Similar questions