English, asked by yogeshyadav20981192, 9 months ago

H. W
5/5/20
Q! Waite The namus
of a the parts of
the sentences​

Answers

Answered by sunny7092
0

Answer:

sorry friend I can't understand this question

Answered by azankazi08
1

Explanation:

Given :-

x+y= 8

xy= 1

To find :-

\begin{lgathered}\sf \bullet \ (1)\ x^2+y^2\\ \\ \bullet \ (2) \sf \ x^3+y^3\\ \\\bullet \ (3)\sf \ xy^2+x^2y \\ \\\bullet \ (4) \sf \ \dfrac{x}{y}+\dfrac{y}{x}\end{lgathered}

∙ (1) x

2

+y

2

∙ (2) x

3

+y

3

∙ (3) xy

2

+x

2

y

∙ (4)

y

x

+

x

y

Identity used !

\bigstar{\boxed{\sf{(a+b)^2=a^2+b^2+2ab}}}★

(a+b)

2

=a

2

+b

2

+2ab

\begin{lgathered}\sf (i) x^2+y^2 \\ \\ \longmapsto\sf (x+y)^2=x^2+y^2+2xy \\ \\ \longmapsto\sf (8)^2=x^2+y^2+2(1)\\ \\ \longmapsto\sf 64=x^2+y^2+2\\ \\\longmapsto\sf 64-2=x^2+y^2\\ \\\longmapsto\sf 62=x^2+y^2\end{lgathered}

(i)x

2

+y

2

⟼(x+y)

2

=x

2

+y

2

+2xy

⟼(8)

2

=x

2

+y

2

+2(1)

⟼64=x

2

+y

2

+2

⟼64−2=x

2

+y

2

⟼62=x

2

+y

2

\bigstar{\boxed{\sf{(x+y)^3=x^3+y^3+3xy(x+y)}}}★

(x+y)

3

=x

3

+y

3

+3xy(x+y)

\begin{lgathered}\sf (ii) x^3+y^3\\ \\\longmapsto\sf (8)^3= x^3+y^3+3(1)[8]\\ \\\longmapsto\sf 512=x^3+y^3+3\times 8\\ \\ \longmapsto\sf 512-24=x^3+y^3\\ \\\longmapsto\sf 488=x^3+y^3\end{lgathered}

(ii)x

3

+y

3

⟼(8)

3

=x

3

+y

3

+3(1)[8]

⟼512=x

3

+y

3

+3×8

⟼512−24=x

3

+y

3

⟼488=x

3

+y

3

\begin{lgathered}\sf (iii) xy^2+x^2y\\ \\ \longmapsto\sf xy(y+x)\\ \\ \longmapsto\sf put \ the \ value \\ \\\longmapsto\sf 1(8)\\ \\ \longmapsto\sf 8=xy^2+x^2y\end{lgathered}

(iii)xy

2

+x

2

y

⟼xy(y+x)

⟼put the value

⟼1(8)

⟼8=xy

2

+x

2

y

\begin{lgathered}\sf (iv) \dfrac{x}{y}+\dfrac{y}{x}\\ \\\dashrightarrow \sf By \ taking \ L.C.M \\ \\\longmapsto\sf \dfrac{x^2+y^2}{xy}\\ \\ \dashrightarrow\sf \ from \ (i) \ x^2+y^2 =62 \ \ \ xy=1 \\ \\\longmapsto\sf \dfrac{62}{1}\\ \\ \longmapsto\sf 62\end{lgathered}

(iv)

y

x

+

x

y

⇢By taking L.C.M

xy

x

2

+y

2

⇢ from (i) x

2

+y

2

=62 xy=1

1

62

⟼62

\boxed{\sf{\blue{x^2+y^2=62}}}

x

2

+y

2

=62

\boxed{\sf{\blue{x^3+y^3=488}}}

x

3

+y

3

=488

\boxed{\sf{\blue{xy^2+x^2y=8}}}

xy

2

+x

2

y=8

\boxed{\sf{\blue{\dfrac{x}{y}+\dfrac{y}{x}= 62}}}

y

x

+

x

y

=62

Similar questions