Psychology, asked by Anonymous, 7 months ago

ha lagta hai ban ho gaya ​

Answers

Answered by 9218
0

Explanation:

Let's first recall Identities Used to solve this problem!!!

\begin{gathered}\boxed{ \sf{ \: log_{x}(x) = 1 \: }} \\ \\ \end{gathered}

log

x

(x)=1

\begin{gathered}\boxed{ \sf{ \: log_{x}(a) + log_{a}(b) = log_{x}(ab) \: }} \\ \\ \end{gathered}

log

x

(a)+log

a

(b)=log

x

(ab)

\begin{gathered}\boxed{ \sf{ \: log_{x}(a) - log_{a}(b) = log_{x} \: \frac{a}{b} \: }} \\ \\ \end{gathered}

(a)−log

a

(b)=log

x

b

a

\begin{gathered}\boxed{ \sf{ \: log_{a}(b) \: = \: \frac{1}{ log_{b}(a) } \: \: }} \\ \\ \\ \end{gathered}

log

a

(b)=

log

b

(a)

1

Let's solve the problem now!!!

\large\underline{\sf{Solution-}}

Solution−

Given that,

\begin{gathered}\sf \: x = 1 + log_{a}(bc) \\ \\ \end{gathered}

x=1+log

a

(bc)

can be rewritten as

\begin{gathered}\sf \: x = 1 + log_{a}\bigg(\dfrac{abc}{a} \bigg) \\ \\ \end{gathered}

x=1+log

a

(

a

abc

)

\begin{gathered}\sf \: x = 1 + log_{a}(abc) - log_{a}(a) \\ \\ \end{gathered}

x=1+log

a

(abc)−log

a

(a)

\begin{gathered}\sf \: x = 1 + log_{a}(abc) - 1 \\ \\ \end{gathered}

x=1+log

a

(abc)−1

\begin{gathered}\sf \: x = log_{a}(abc) \\ \\ \end{gathered}

x=log

a

(abc)

can be further rewritten as

\begin{gathered}\sf \: x = \dfrac{1}{ log_{abc}(a) } \\ \\ \end{gathered}

x=

log

abc

(a)

1

\begin{gathered}\bf\implies \:\dfrac{1}{x} = log_{abc}(a) - - - (1) \\ \\ \end{gathered}

x

1

=log

abc

(a)−−−(1)

Similarly,

\begin{gathered}\bf\implies \:\dfrac{1}{y} = log_{abc}(b) - - - (2) \\ \\ \end{gathered}

y

1

=log

abc

(b)−−−(2)

and Similarly

\begin{gathered}\bf\implies \:\dfrac{1}{z} = log_{abc}(c) - - - (3) \\ \\ \end{gathered}

z

1

=log

abc

(c)−−−(3)

On adding equation (1), (2) and (3), we get

\begin{gathered}\sf \: \dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z} \\ \\ \end{gathered}

x

1

+

y

1

+

z

1

\begin{gathered}\sf \: = \: log_{abc}(a) \: + \: log_{abc}(b) \: + \: log_{abc}(c) \\ \\ \end{gathered}

=log

abc

(a)+log

abc

(b)+log

abc

(c)

\begin{gathered}\sf \: = \: log_{abc}(abc) \\ \\ \end{gathered}

=log

abc

(abc)

\begin{gathered}\sf \: = \: 1 \\ \\ \end{gathered}

=1

\begin{gathered}\bf\implies \:\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z} = 1 \\ \\ \end{gathered}

x

1

+

y

1

+

z

1

=1

\begin{gathered}\bf\implies \:\dfrac{yz + zx + xy}{xyz} = 1 \\ \\ \end{gathered}

xyz

yz+zx+xy

=1

\begin{gathered}\bf\implies \:xy + yz + zx = xyz \\ \\ \end{gathered}

⟹xy+yz+zx=xyz

\rule{190pt}{2pt}

{{ \mathfrak{Additional\:Information}}}AdditionalInformation

\begin{gathered}\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{{More \: Formulae}}}} \\ \\ \bigstar \: \bf{ log_{x}(x) = 1}\\ \\ \bigstar \: \bf{ log_{x}( {x}^{y} ) = y}\\ \\ \bigstar \: \bf{ log_{ {x}^{z} }( {x}^{w} ) = \dfrac{w}{z} }\\ \\ \bigstar \: \bf{ log_{a}(b) = \dfrac{logb}{loga} }\\ \\ \bigstar \: \bf{ {e}^{logx} = x}\\ \\ \bigstar \: \bf{ {e}^{ylogx} = {x}^{y}}\\ \\ \bigstar \: \bf{log1 = 0}\\ \\ \end{array} }}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

MoreFormulae

MoreFormulae

★log

x

(x)=1

★log

x

(x

y

)=y

★log

x

z

(x

w

)=

z

w

★log

a

(b)=

loga

logb

★e

logx

=x

★e

ylogx

=x

y

★log1=0

Similar questions