English, asked by ankitavijaysingh2003, 4 months ago

Ha pta hai behen ✨✨✨

Actually aapko aacha bhi nhi lgega bcoz ,

Adhe kapde nhi pehne hai na (•ˋ _ ˊ•)​

Attachments:

Answers

Answered by XxSrishtiRajputxX
23

Answer:

\begin{gathered}{\bf{Given\::}} \\ \end{gathered}

Given:

Radius of a circular park is 20 m.

Three boys Ankur, Syed and David are sitting at equal distances on its boundary.

\begin{gathered} \\ {\bf{To\: Find\::}} \\ \end{gathered}

ToFind:

Length of the string of each phone.

\begin{gathered} \\ {\bf{Solution\::}} \\ \end{gathered}

Solution:

Let,

As shown in figure,

Point A denotes Ankur.

Point B denotes Syed.

Point C denotes David.

It is given that,

They are sitting at equal distances.

\begin{gathered}:\implies\:\bf{AB\:=\:BC\:=\:AC\:=\:x\:m} \\ \end{gathered}

:⟹AB=BC=AC=xm

\bf\red{\therefore\:\triangle{ABC}\:is\:an\: equilateral\:\triangle.}∴△ABCisanequilateral△.

Point O denotes the centre of circular park.

➣ We draw OD, which is perpendicular to BC.

\begin{gathered}\bf{OD\perp{BC}} \\ \end{gathered}

OD⊥BC

Thus,

\begin{gathered}:\implies\:\bf{BD\:=\:CD\:=\:\dfrac{x}{2}\:} \\ \end{gathered}

:⟹BD=CD=

2

x

\red\checkmark✓ Join OB & OA.

Now,

In ∆OBD,

According to Pythagoras theorem,

➠ \tt{(OB)^2\:=\:(BD)^2\:+\:(OD)2\:}(OB)

2

=(BD)

2

+(OD)2

Where,

OB is the radius of the circle = 20 m

➠ \tt{(20)^2\:=\:\left(\dfrac{x}{2}\right)^2\:+\:(OD)2\:}(20)

2

=(

2

x

)

2

+(OD)2

➠ \tt{400\:=\:\dfrac{x^2}{4}\:+\:(OD)2\:}400=

4

x

2

+(OD)2

➠ \tt{(OD)^2\:=\:400\:-\:\dfrac{x^2}{4}\:}(OD)

2

=400−

4

x

2

➠ \tt{OD\:=\:\sqrt{400\:-\:\dfrac{x^2}{4}}\:}OD=

400−

4

x

2

Again,

In ∆ABD,

➠ \tt{(x)^2\:=\:(AD)^2\:+\:\left(\dfrac{x}{2}\right)^2\:}(x)

2

=(AD)

2

+(

2

x

)

2

➠ \tt{x^2\:=\:(AD)^2\:+\:\dfrac{x^2}{4}\:}x

2

=(AD)

2

+

4

x

2

➠ \tt{(AD)^2\:=\:x^2\:-\:\dfrac{x^2}{4}\:}(AD)

2

=x

2

4

x

2

➠ \tt{AD\:=\:\sqrt{\dfrac{3x^2}{4}}\:}AD=

4

3x

2

➠ \tt{AD\:=\:\dfrac{\sqrt{3}x}{2}\:}AD=

2

3

x

Now,

As we know that,

\begin{gathered}:\implies\:\bf{AD\:=\:OA\:+\:OD\:} \\ \end{gathered}

:⟹AD=OA+OD

Where,

OA is the radius of the circle = 20 m

\begin{gathered}:\implies\:\tt{\dfrac{\sqrt{3}x}{2}\:=\:20\:+\:\sqrt{400\:-\:\dfrac{x^2}{4}}\:} \\ \end{gathered}

:⟹

2

3

x

=20+

400−

4

x

2

\begin{gathered}:\implies\:\tt{\dfrac{\sqrt{3}x}{2}\:-\:20\:=\:\sqrt{400\:-\:\dfrac{x^2}{4}}\:} \\ \end{gathered}

:⟹

2

3

x

−20=

400−

4

x

2

Squaring both sides, we get

\begin{gathered}:\implies\:\tt{\left(\dfrac{\sqrt{3}x}{2}\:-\:20\right)^2\:=\:\left(\sqrt{400\:-\:\dfrac{x^2}{4}}\right)^2\:} \\ \end{gathered}

:⟹(

2

3

x

−20)

2

=(

400−

4

x

2

)

2

\begin{gathered}:\implies\:\tt{\left(\dfrac{\sqrt{3}x}{2}\right)^2\:+\:(20)^2\:-\:2\times{\dfrac{\sqrt{3}x}{2}}\times{20}\:=\:400\:-\:\dfrac{x^2}{4}\:} \\ \end{gathered}

:⟹(

2

3

x

)

2

+(20)

2

−2×

2

3

x

×20=400−

4

x

2

\begin{gathered}:\implies\:\tt{\dfrac{3x^2}{4}\:+\:\cancel{400}\:-\:20\sqrt{3}x\:=\:\cancel{400}\:-\:\dfrac{x^2}{4}\:} \\ \end{gathered}

:⟹

4

3x

2

+

400

−20

3

x=

400

4

x

2

\begin{gathered}:\implies\:\tt{\dfrac{3x^2}{4}\:-\:20\sqrt{3}x\:=\:-\:\dfrac{x^2}{4}\:} \\ \end{gathered}

:⟹

4

3x

2

−20

3

x=−

4

x

2

\begin{gathered}:\implies\:\tt{\dfrac{3x}{4}\:-\:20\sqrt{3}\:=\:-\:\dfrac{x}{4}\:} \\ \end{gathered}

:⟹

4

3x

−20

3

=−

4

x

\begin{gathered}:\implies\:\tt{\dfrac{3x}{4}\:+\:\dfrac{x}{4}\:=\:20\sqrt{3}\:} \\ \end{gathered}

:⟹

4

3x

+

4

x

=20

3

\begin{gathered}:\implies\:\tt{\dfrac{3x\:+\:x}{4}\:=\:20\sqrt{3}\:} \\ \end{gathered}

:⟹

4

3x+x

=20

3

\begin{gathered}:\implies\:\tt{\dfrac{4x}{4}\:=\:20\sqrt{3}\:} \\ \end{gathered}

:⟹

4

4x

=20

3

\begin{gathered}:\implies\:\bf\pink{x\:=\:20\sqrt{3}\:m\:=\:34.64\:m\:} \\ \end{gathered}

:⟹x=20

3

m=34.64m

\bf{\therefore}∴ Length of the string of each phone is 34.64 m.

⠀⠀⠀⠀⠀

Explanation:

good afternoon sister hru

Similar questions