Math, asked by jjasu4614, 6 months ago

hahalf the perimeter of the of a rectangular room is 46 metre and its length is 6 more than its blood to what is the length and breadth of the room​

Answers

Answered by EliteZeal
42

Correct Question

 \:\:

Half the perimeter of rectangular room is 46 metre and its length is 6 more than its breadth what is the length and breadth of the room.

 \:\:

\huge{\blue{\bold{\underline{\underline{Answer :}}}}}

 \:\:

 \large{\green{\underline \bold{\tt{Given :-}}}}

 \:\:

  • Half the perimeter of rectangular room is 46 m

 \:\:

  • Length is 6 more than its breadth

 \:\:

 \large{\red{\underline \bold{\tt{To \: Find :-}}}}

 \:\:

  • Length and breadth of the room

 \:\:

\large{\orange{\underline{\tt{Solution :-}}}}

 \:\:

  • Let the length be "x"

  • Let the breadth be "y"

 \:\:

 \purple{\underline \bold{According \: to \: the \ question :}}

 \:\:

➠ x = y + 6 ---------- (1)

 \:\:

 \underline{\bold{\texttt{Perimeter of rectangle :}}}

 \:\:

➠ 2(Length + Breadth) ------ (2)

 \:\:

 \underline{\bold{\texttt{Perimeter of rectangular room :}}}

 \:\:

  • Length = x = y + 6

  • Breadth = y

 \:\:

 \underline{\bold{\texttt{Putting these values in (2) }}}

 \:\:

2(Length + Breadth)

 \:\:

➠ 2(x + y)

 \:\:

➠ 2(y + 6 + y)

 \:\:

Given that half the perimeter is 46

 \:\:

So,

 \:\:

 \sf 46 = \dfrac { 2(y + 6 + y) } { 2 }

 \:\:

➜ 46 = y + 6 + y

 \:\:

➜ 46 - 6 = y + y

 \:\:

➜ 40 = 2y

 \:\:

➨ y = 20 ------- (3)

 \:\:

  • Hence breadth of rectangular room is 20 m

 \:\:

 \underline{\bold{\texttt{Putting y = 20 from (3) to (1) }}}

 \:\:

➠ x = y + 6

 \:\:

➜ x = 20 + 6

 \:\:

➨ x = 26

 \:\:

  • Hence length of rectangular room is 26 m

 \:\:

∴ The length and breadth of rectangular room is 26 m & 20 m respectively.

 \:\:

Additional information

 \:\:

Area of rectangle = Length × Breadth

 \:\:

Properties of rectangle

 \:\:

  • The opposite sides are parallel and equal to each other

  • Each interior angle is equal to 90°

  • The sum of all the interior angles is equal to 360°

  • The diagonals bisect each other

  • Both the diagonals have the same length

Cynefin: Perfect!
Answered by Ranveerx107
0

 \:\:

\huge{\blue{\bold{\underline{\underline{Answer :}}}}}

 \:\:

 \large{\green{\underline \bold{\tt{Given :-}}}}

 \:\:

  • Half the perimeter of rectangular room is 46 m

 \:\:

  • Length is 6 more than its breadth

 \:\:

 \large{\red{\underline \bold{\tt{To \: Find :-}}}}

 \:\:

  • Length and breadth of the room

 \:\:

\large{\orange{\underline{\tt{Solution :-}}}}

 \:\:

Let the length be "x"

Let the breadth be "y"

 \:\:

 \purple{\underline \bold{According \: to \: the \ question :}}

 \:\:

➠ x = y + 6 ---------- (1)

 \:\:

 \underline{\bold{\texttt{Perimeter of rectangle :}}}

 \:\:

➠ 2(Length + Breadth) ------ (2)

 \:\:

 \underline{\bold{\texttt{Perimeter of rectangular room :}}}

 \:\:

Length = x = y + 6

Breadth = y

 \:\:

 \underline{\bold{\texttt{Putting these values in (2) }}}

 \:\:

2(Length + Breadth)

 \:\:

➠ 2(x + y)

 \:\:

➠ 2(y + 6 + y)

 \:\:

  • Given that half the perimeter is 46

 \:\:

So,

 \:\:

 \sf 46 = \dfrac { 2(y + 6 + y) } { 2 }

 \:\:

➜ 46 = y + 6 + y

 \:\:

➜ 46 - 6 = y + y

 \:\:

➜ 40 = 2y

 \:\:

➨ y = 20 ------- (3)

 \:\:

  • Hence breadth of rectangular room is 20 m

 \:\:

 \underline{\bold{\texttt{Putting y = 20 from (3) to (1) }}}

 \:\:

➠ x = y + 6

 \:\:

➜ x = 20 + 6

 \:\:

➨ x = 26

 \:\:

  • Hence length of rectangular room is 26 m

 \:\:

  • ∴ The length and breadth of rectangular room is 26 m & 20 m respectively.

 \:\:

Similar questions