Math, asked by thirumal4268, 9 months ago

हल कीजिए : 24x \  \textless \  100, जब
(i) x एक प्राकृत संख्या है। (ii) x एक पूर्णाक है।

Answers

Answered by amitnrw
1

i) x = { 1 , 2 , 3 , 4 } (ii)  x = { ......., - 2 , -1 , 0 , 1 , 2, 3 , 4 }

Step-by-step explanation:

24 x < 100

=> 24 x /24  < 100/24

=> x < 25/6

=> x  < 4.16

(i) x एक प्राकृत संख्या है

x < 4.16

=> x = { 1 , 2 , 3 , 4 }

(ii) x एक पूर्णाक है

x < 4.16

=> x = { ......., - 2 , -1 , 0 , 1 , 2, 3 , 4 }

और  पढ़ें

निम्नलिखित प्रश्न 5 से 16 तक वास्तविक संख्या x के लिए हल कीजिए: 4x + 3 &lt; 5x + 7[/text</p><p>https://brainly.in/question/8941997</p><p></p><p>निम्नलिखित प्रश्न 5 से 16 तक वास्तविक संख्या x के लिए हल कीजिए: [tex]3(x - 1) \leq 2(x - 3)

https://brainly.in/question/8942000

Answered by MoonSpark
83

Solution :)

(i) Given that 24x < 100

Now we have to divide the inequality by 24 then we get x < 25/6

Now when x is a natural integer then

It is clear that the only natural number less than 25/6 are 1, 2, 3, 4.

Thus, 1, 2, 3, 4 will be the solution of the given inequality when x is a natural number.

Hence {1, 2, 3, 4} is the solution set.

(ii) Given that 24x < 100

Now we have to divide the inequality by 24 then we get x < 25/6

now when x is an integer then

It is clear that the integer number less than 25/6 are…-1, 0, 1, 2, 3, 4.

Thus, solution of 24 x < 100 are…,-1, 0, 1, 2, 3, 4, when x is an integer.

Hence {…, -1, 0, 1, 2, 3, 4} is the solution set.

Similar questions