Physics, asked by StrongGirl, 8 months ago

Half life of C^{19} is 5700 years. find its decay constant?

Attachments:

Answers

Answered by BrainlyPopularman
27

GIVEN :

• Half life   \bf \:( t_{ \frac{1}{2} }) of \bf C^{19} is 5700 years.

TO FIND :

• Decay constant (\lambda)= ?

SOLUTION :

• We know that –

 \\ \large \implies { \boxed{ \bf \: t_{ \frac{1}{2} } =  \dfrac{0.693}{ \lambda}}} \\

• Now put the values –

 \\ \large \implies \bf \: 5700=  \dfrac{0.693}{ \lambda} \\

 \\ \large \implies \bf \: \lambda=  \dfrac{0.693}{5700} \\

• We should write this as –

 \\ \large \implies \bf \: \lambda=  \dfrac{693}{5700000} \\

 \\ \large \implies \bf \: \lambda=  \dfrac{693}{57 \times  {10}^{5} } \\

 \\ \large \implies \bf \: \lambda=  \dfrac{693}{57} \times {10}^{ - 5} \\

 \\ \large \implies \large{ \boxed{ \bf  \lambda=12.26\times {10}^{ - 5} \: year ^{ - 1} }} \\

Hence , Option (1) is correct.

Answered by snehitha2
9

Answer:

option (1)

Explanation:

\boxed{\bf Given,} \\\\half-life \ of \ C^{19} =5700 \ years \\\\ \implies t_{\frac{1}{2}} =5700 \ years  \\\\ \boxed{\bf To \ find,} \\\\ decay \ constant, \lambda=? \\\\ \boxed{\bf solution:}  \\\\ we \ know, \\\\ \boxed {t_{\frac{1}{2}} = \frac{0.693}{\lambda}}\\\\\\ \implies \lambda=\frac{0.693}{t_{\frac{1}{2}}} \\\\ \lambda=\frac{0.693}{5700} \\\\ \lambda=\frac{693}{5700\times1000} \\\\ \lambda=\frac{693}{57} \times 10^{-5} \\\\ \lambda=12.16 \times 10^{-5} \ year^{-1} \\\\

\boxed{\bf \therefore the \ decay \ constant \ = \ 12.16\times10^{-5} \ year^{-1} }

Similar questions