Math, asked by khansaraheem16, 3 months ago

half of the sum of two numbers is 34 and half of their difference is 6 . find the numbers​

Answers

Answered by Anonymous
2

Step-by-step explanation:

Here is your Answer

please mark me as Brainliest ☺️

and just follow ❤️❤️

Attachments:
Answered by TRISHNADEVI
2

ANSWER :

 \\

✪ If half of the sum of two numbers is 34 and half of their difference is 6, then the numbers are : 40 and 28.

 \underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }

SOLUTION :

\\  \\

Given :-

 \\

  • Half of the sum of two numbers = 34

  • Half of the difference of two numbers = 6

 \\

To Find :-

 \\

  • The numbers = ?

 \\

Calculation :-

 \\

Suppose,

  • The numbers are : x and y

 \\

According to first condition,

 \\

  • Half of (x + y) = 34

 \bigstar \: \: \:  \: \sf{ \large{ \dfrac{x + y}{2}  = 34}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \sf{ \large{ \implies \: x + y = 68  \:  \: -  -  -  -  -  > (1)}}

 \\

According to second condition,

 \\

  • Half of (x - y) = 6

 \bigstar \: \: \:  \: \sf{ \large{ \dfrac{x  -  y}{2}  = 6}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \sf{ \large{ \implies \: x  -  y = 12 \:  \: -  -  -  -  -  > (2)}}

 \\

Solving eq. (1) and eq. (2),

 \\

 \sf{ \large{(1) + (2) \implies (x + y) + (x  - y) = 68 + 12}} \\  \\  \:  \:  \:  \sf{ \large{ \implies x +  \cancel{y}+ x -  \cancel{y} = 80}} \\  \\  \sf{ \large{ \implies 2x =80}}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\ \sf{ \large{ \implies x =  \dfrac{80}{2}}}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\ \sf{ \large{ \therefore \:  \:  \underline{ \: x = 40 \: }}} \:  \:  \:  \:  \:  \:  \:

 \\

And,

 \\

 \sf{ \large{(1)  -  (2) \implies (x + y)  -  (x  - y) = 68  -  12}} \\  \\  \:  \:  \:  \sf{ \large{ \implies \cancel{x}+ y -  \cancel{x}  + y= 56}} \\  \\  \sf{ \large{ \implies 2y =56}}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\ \sf{ \large{ \implies y =  \dfrac{56}{2}}}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\ \sf{ \large{ \therefore \:  \:  \underline{ \: y = 28 \: }}} \:  \:  \:  \:  \:  \:  \:  \:  \:

 \\

  • x = 40 and y = 28

✪ Hence, the numbers are : 40 and 28.

 \underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }

VERIFICATION :

 \\  \\

We have,

  • The numbers are : x = 40 and y = 28.

 \\

According to first condition,

 \\

  • Half of the sum of the numbers = 34

Or,

  • Half of (x + y) = 34

 \\

  \:  \: \bigstar \:  \:  \sf{Half \:  \:  of \:  \:  (x + y) = \dfrac{x + y}{2} }  \:  \: \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ =  \dfrac{40 + 28}{2}} \\  \\    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{=  \dfrac{68}{2}}  \\  \\    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{= 34}

 \\

According to second condition,

 \\

  • Half of the difference of the numbers = 34

Or,

  • Half of (x - y) = 34

 \\

  \:  \: \bigstar \:  \:  \sf{Half \:  \:  of \:  \:  (x  -  y) = \dfrac{x  -  y}{2} }  \:  \: \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ =  \dfrac{40  -  28}{2}} \\  \\    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{=  \dfrac{12}{2}}  \\  \\    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{= 6}

 \\

Hence verified.

Similar questions