Math, asked by parentsgift2695, 10 months ago

Half the perimeter of rectangular garden. Whose length is 4mt more than its width is 36mt. Find

the dimentions of the garden.​

Answers

Answered by Anonymous
16

Answer:

Step-by-step explanation:

Let the width be x.

then length be x+4

A/Q-

l+b=36

x+(x+4)=36

2x+4=36

2x=36-4

2x=32

x=16.

Hence, The length of garden will be 20 m and width will be 16 m.

Answered by Anonymous
14

Solution :

\bf{\red{\underline{\bf{Given\::}}}}

Half the perimeter of rectangular garden. Whose length is 4 m more than its width is 36 m

\bf{\red{\underline{\bf{To\:find\::}}}}

The dimensions of the garden.

\bf{\red{\underline{\bf{Explanation\::}}}}

Let the width of the garden be r m

Let the length of the garden be (r+4) m

We know that formula of the perimeter of rectangle :

\boxed{\tt{Perimeter\:of\:rectangle=2(Length+Breadth)}}}}

A/q

\longrightarrow\sf{\dfrac{1}{2} \times perimeter=2(Length+breadth)}\\\\\\\longrightarrow\sf{\dfrac{1}{2} \times 36}=2(r+4+r)}}\\\\\\\longrightarrow\sf{36=\dfrac{1}{\cancel{2}} \times \cancel{2}(4+r+r)}\\\\\\\longrightarrow\sf{36=4+2r}\\\\\\\longrightarrow\sf{2r=36-4}\\\\\\\longrightarrow\sf{2r=32}\\\\\\\longrightarrow\sf{r=\cancel{\dfrac{32}{2} }}\\\\\\\longrightarrow\sf{\pink{r=16\:m}}

Thus;

\underline{\sf{The\:width\:of\:the\:garden\: r = \orange{16\:m}}}}\\\underline{\sf{The\:length\:of\:the\:garden\: (r+4) = 16+4=\orange{20\:m}}}}

Similar questions