Physics, asked by tusharraj77123, 10 months ago

Happy Friendship Day But solve this question please ....

A man walk 10 m south 20 m north and then 6 m east . In it's full walking he take 3 mins ...
Then find the following:

(i) Distance
(ii) Displacement
(iii) Velocity per min .

\textsf{No Spams}

Answers

Answered by Anonymous
7

\color{red}{\large\underline{\underline\mathtt{Question:}}}

\textit{A man walk 10 m south 20 m north and then 6 m}\textit{ .In it's full walking he take 3 mins}

\textit{Then find the following:}

  • \mathrm{Distance}
  • \mathrm{Displacement}
  • \mathrm{Velocity (In\:m\:min^{-1})}

______________________________________

\color{purple}{\large\underline{\underline\mathtt{To\:Find:}}}

\textsf{We have to find the:}

  • \mathrm{Distance}
  • \mathrm{Displacement}
  • \mathrm{Velocity (In\:m\:min^{-1})}

______________________________________

\color{blue}{\large\underline{\underline\mathtt{Concept:}}}

\textit{In this case , the body is traveling 10 m south and 20 north} \textit{so whole distance will be 10 m towards north.}

______________________________________

\color{Lime}{\large\underline{\underline\mathtt{Solution:}}}

\underline\mathrm{Distance}

We Know:

\textit{Distance = Sum of initials positions}

Here , the initial positions are.

10m\:,\:20 m\:and \:6m

\textit{Distance = (10 + 20 + 6)m}

\textit{Distance = 36m}

{\boxed{\therefore Distance = 36m}}

______________________________________

\underline{\mathrm{Displacement}}

We know at the final positions , the figure formed is a right - angled triangle.

By Pythagoras theorem :

{\boxed{h^{2} = p^{2} + b^{2}}}

Where,

  • \mathtt{h = hypotenuse \rightarrow 10m}
  • \mathtt{p = height \rightarrow x\:m}
  • \mathtt{b = base \rightarrow 6 m}

We get ,

\Rightarrow 10^{2} = x^{2} + 6^{2}

\Rightarrow 10^{2} - 6^{2} = x^{2}

\Rightarrow \sqrt{10^{2} - 6^{2}} = x

\Rightarrow \sqrt{100 - 36} = x

\Rightarrow \sqrt{64} = x

\Rightarrow 8 = x

{\boxed{\therefore Displacement = 8 m}}

______________________________________

\underline\mathrm{Velocity}

We know ,

{\boxed{Velocity = \dfrac{Displacement}{time}}}

So , by using this we get:

\Rightarrow Velocity = \dfrac{8}{3}

\Rightarrow Velocity = 2\dfrac{2}{3}m\:min^{-1}

{\boxed{\therefore Velocity = 2\dfrac{2}{3}m\:min^{-1}}}

______________________________________

Attachments:
Similar questions