Math, asked by nigaranjum18, 9 months ago

Harendra singh sells two
aritcles at Rs. 1710 He sells
first article at 10% loss
while earn 25% profit on
second. If C.P of first article
is equals to S.P of second
article Find his profit or loss
on overall?​​

Answers

Answered by mddilshad11ab
70

\huge{\underline{\purple{\rm{Solution:}}}}

\small{\underline{\red{\rm{Given\:in\:case\:1}}}}

Selling price of 2 article=Rs.1710

Loss on 1st article=10%

profit on 2nd article=25%

\small{\underline{\red{\rm{Let:}}}}

The cost price of 1st article=X

The cost price of 2nd article=Y

\small{\underline{\green{\rm{As\:per\:the\: above\: information:}}}}

  • Using formula here

\small{\boxed{\red{\rm{SP=(\frac{100+G\%}{100})*CP:}}}}

\sf{\dashrightarrow \frac{100-10}{100}*X+\frac{100+25}{100}*Y=1710}

\sf{\dashrightarrow \frac{90}{100}*X+\frac{125}{100}*Y=1710}

\sf{\dashrightarrow 0.9X+1.25Y=1710----(1)}

\small{\underline{\red{\rm{Given\:in\:case\:2}}}}

CP of 1st article is equal to SP of 2nd article

\sf{\dashrightarrow X=1.25Y----(2)}

Putting the value of X=1.25Y in EQ 1

\sf{\dashrightarrow 1.25Y+1.25Y=1710}

\sf{\dashrightarrow 0.9*1.25Y+1.25Y=1710}

\sf{\dashrightarrow 1.125Y+1.25Y=1710}

\sf{\dashrightarrow 2.375Y=1710}

\sf{\dashrightarrow Y=720}

Putting the value of Y=720 in EQ 2

\sf{\dashrightarrow X=1.25*720}

\sf{\dashrightarrow X=900}

Now, Calculate total SP and CP here

\sf{\dashrightarrow Total\:SP=1710}

\sf{\dashrightarrow Total\:CP=900+720}

\sf{\dashrightarrow Total\:CP=1620}

NOTE:If Sp is greater than Cp than we get profit

  • Using formula here

\large{\boxed{\green{\rm{P=SP-CP}}}}

\sf{\dashrightarrow Profit=1710-1620}

\sf{\dashrightarrow Profit=90}

Hence,

He will get profit of Rs.90 on overall.

Answered by mangalasingh00978
0

Answer:

Selling price of 2 article=Rs.1710

Loss on 1st article=10%

profit on 2nd article=25%

\small{\underline{\red{\rm{Let:}}}}

Let:

The cost price of 1st article=X

The cost price of 2nd article=Y

\small{\underline{\green{\rm{As\:per\:the\: above\: information:}}}}

Aspertheaboveinformation:

Using formula here

\small{\boxed{\red{\rm{SP=(\frac{100+G\%}{100})*CP:}}}}

SP=(

100

100+G%

)∗CP:

\sf{\dashrightarrow \frac{100-10}{100}*X+\frac{100+25}{100}*Y=1710}⇢

100

100−10

∗X+

100

100+25

∗Y=1710

\sf{\dashrightarrow \frac{90}{100}*X+\frac{125}{100}*Y=1710}⇢

100

90

∗X+

100

125

∗Y=1710

\sf{\dashrightarrow 0.9X+1.25Y=1710----(1)}⇢0.9X+1.25Y=1710−−−−(1)

\small{\underline{\red{\rm{Given\:in\:case\:2}}}}

Givenincase2

CP of 1st article is equal to SP of 2nd article

\sf{\dashrightarrow X=1.25Y----(2)}⇢X=1.25Y−−−−(2)

Putting the value of X=1.25Y in EQ 1

\sf{\dashrightarrow 1.25Y+1.25Y=1710}⇢1.25Y+1.25Y=1710

\sf{\dashrightarrow 0.9*1.25Y+1.25Y=1710}⇢0.9∗1.25Y+1.25Y=1710

\sf{\dashrightarrow 1.125Y+1.25Y=1710}⇢1.125Y+1.25Y=1710

\sf{\dashrightarrow 2.375Y=1710}⇢2.375Y=1710

\sf{\dashrightarrow Y=720}⇢Y=720

Putting the value of Y=720 in EQ 2

\sf{\dashrightarrow X=1.25*720}⇢X=1.25∗720

\sf{\dashrightarrow X=900}⇢X=900

Now, Calculate total SP and CP here

\sf{\dashrightarrow Total\:SP=1710}⇢TotalSP=1710

\sf{\dashrightarrow Total\:CP=900+720}⇢TotalCP=900+720

\sf{\dashrightarrow Total\:CP=1620}⇢TotalCP=1620

NOTE:If Sp is greater than Cp than we get profit

Using formula here

\large{\boxed{\green{\rm{P=SP-CP}}}}

P=SP−CP

\sf{\dashrightarrow Profit=1710-1620}⇢Profit=1710−1620

\sf{\dashrightarrow Profit=90}⇢Profit=90

Hence,

He will get profit of Rs.90 on overall.

Similar questions