Math, asked by munishanagal, 6 days ago

Harish divides two sums of money among his four sons Naresh, Vipin, Bhupesh, and Yogesh. The first sum is divided in the ratio 4 : 3 : 2 : 1 and second in the ratio 5 : 6 : 7 : 8. If the second sum is twice the first, then the largest total is received by​

Answers

Answered by sohamkdeb
0

Answer:

Here is your answer

Step-by-step explanation:

This may help you

Attachments:
Answered by payalchatterje
2

Answer:

The largest total is received by Naresh.

Step-by-step explanation:

Given,Harish divides two sums of money among his four sons Naresh, Vipin, Bhupesh, and Yogesh.

The first sum is divided in the ratio 4 : 3 : 2 : 1.

and second in the ratio 5 : 6 : 7 : 8.

Let first sum be x rupees and second sum be y rupees.

It is given that the second sum is twice the first.

So,y = 2x

From first sum,

Naresh gets

x \times  \frac{4}{4 + 3 + 2 + 1}  \\  = x \times  \frac{4}{10}  \\  =  \frac{2x}{5}  \: rupees

Vipin gets

x \times  \frac{3}{10}   \\ =  \frac{3x}{10}  \: rupees

Bhupesh gets

 = x  \times  \frac{2}{10}  \\  =  \frac{x}{5}  \: rupees

Yogesh gets

 = x \times  \frac{1}{10}  =  \frac{x}{10}  \: rupees

From second sum,

Naresh gets

 = y \times  \frac{5}{5 + 6 + 7 + 8}  \\  = y \times  \frac{5}{26}  \\  =  \frac{5y}{26}  \: \\  =  \frac{5 \times 2x}{26}  \\  =  \frac{5x}{13} \:  rupees

Vipin gets

 = y \times  \frac{6}{26}  \\  =  \frac{3y}{26}   \\  =  \frac{3 \times 2x}{26}  \\  =  \frac{3x}{13}  \: rupees

Bhupesh gets

 = y \times  \frac{7}{26}  \\  =  \frac{7y}{26}   \\  =  \frac{7 \times 2x}{26}  \\  =  \frac{7x}{13}  \: rupees

Yogesh gets

 = y \times  \frac{8}{26}  \\  =  \frac{4y}{13}  \\  =  \frac{4 \times 2x}{13}  \\  =  \frac{28x}{13}  \: rupees

So, Naresh gets total

 =  \frac{2x}{5}  +  \frac{28x}{13}  \\  =  \frac{26x + 140x}{65}  \\  =  \frac{166x}{65}  \: rupees

Vipin gets total

 \frac{3x}{10}  +  \frac{3x}{13}  \\  =  \frac{39x + 30x}{130}  \\  =  \frac{69x}{130}  \\  =  \frac{ \frac{69x}{2} }{65}  \\  =  \frac{34.5x}{65}  \: rupees

Bhupesh gets total

 =  \frac{x}{5}  +  \frac{7x}{13}  \\  =  \frac{13x + 35x}{65}  \\  =  \frac{48x}{65}  \: rupees

Yogesh gets total

 \frac{x}{10}  +  \frac{28x}{13}  \\  =   \frac{13x + 280x}{130}  \\  =  \frac{293x}{130}  \\  =  \frac{146.5x}{65}  \:  \: rupees

It is clear that,

 \frac{166x}{65  }  >  \frac{146.5x}{65}  >  \frac{48x}{65}  >  \frac{34.5x}{65}

Naresh gets largest amount.

Sum of money related more maths,

1)https://brainly.in/question/48873196

2)https://brainly.in/question/9097825

Similar questions