Math, asked by routbiswasruti, 8 months ago

Harish walked 14kms towards south. He turned left and walked 17kms, then turned right and walked 10kms and finally turned right and walked 27kms.How far is he from the starting point?
a.47kms
b.13√2kms
c.24kms
d.26kms​

Answers

Answered by AkshayBTECH
3

Answer:

option d)26.

Step-by-step explanation:

solved in the picture above and it is absolutely corrrect.

Attachments:
Answered by ItzArchimedes
12

Diagram :-

\setlength{\unitlength}{2mm}\begin{picture}(0,0)\thicklines\put(0,0){\line(2,3){1.8cm}}\put(0,0){\line(3,0){4.6cm}}\multiput(9,0)(0,1){5}{\line(0,3){1mm}}\put(8.87,5){\line(3,0){2.8cm}}\put(23,0){\line(0,3){1cm}}\put(9,5){\line(0,3){1.68cm}}\put(3,-2){\sf\footnotesize 10km}\put(15,-2){\sf\footnotesize 17km}\put(0,-2.5){$\underset{\sf\footnotesize 27km}{\underbrace{\qquad\qquad\qquad\qquad\qquad\qquad\quad}}$}\put(24,2){\sf\footnotesize 10km}\put(15,5.4){\sf\footnotesize 17km}\put(9.6,2){\sf\footnotesize 10km}\put(9.5,10){\sf\footnotesize 14km}\put(8.5,14){\sf\footnotesize A}\put(-1,-1){\sf\footnotesize B}\end{picture}

Solution :-

By observing the given figure ,

  • Starting point is A
  • Ending point is B

Now, here we have a right triangle with ,

  • Height = 10km + 14km = 24km
  • Base = 10km

Here , the hypotenuse of the right ∆ is the displacement .

Since , displacement is defined as The shortest distance between initial point & final point” . So , here the initial point is A & final point is B now , joining the points displacement is line AB = hypotenuse

Now , using Pythagoras theorem

Hypotenuse² = Base² + Height²

Or ,

Displacement² = base² + height²

\implies\rm Displacement = \sqrt{\sf 10^2+24^2}

 \implies\rm Displacement = \sqrt{\sf 100+576}

\implies\rm Displacement = \sqrt{\sf 676}

\implies\rm Displacement =\underline{\boxed{\textbf{\textsf{26km}}}}

\therefore \underline{\sf Hence,\;distance\;from\;starting\;point\;to\;ending\;point=\boxed{\textbf{\textsf{26km}}}}

Similar questions