Harmful effects of plastics?
Answers
Answered by
1
Harmful Effects of Plastic
A sea change in building technology arrived in the 1950s with the “Age of Plastic.” Industrial development of fossil fuels into a wide array of plastics changed formulations in everything from insulation to mechanicals to paint, and plastic is still a ubiquitous component of every building assembly. Unfortunately, the impacts of plastic production in its many forms are heavy in every phase of its life cycle. While there is a common general understanding that plastics have negative ecological associations, a closer understanding of what types of plastics create what types of impacts will empower us to improve the toxic footprint of our buildings.
Plastics are not inherently bad, and they have many redeeming ecological features; in fact, many of the techniques we utilize in our designs involve targeted use of plastic products. Their durability and low maintenance reduce material replacement, their light weight reduces shipping energy, their formulation into glue products allows for the creation of engineered lumber and sheet products from recycled wood, and their formulation into superior insulation and sealant products improves the energy performance of our structures.
The feedstock of plastic is primarily petroleum- or natural-gas-derived, although bio-plastics are making inroads in the overall market share of plastic products. Obvious issues emerge regarding the finite amount of available petroleum resources, as well as the pollution associated with oil extraction and refinement; the massive Gulf Coast oil spill of 2010 is only one of the more notorious of the many ecologically devastating accidents that are not frequently considered in addition to the standard pollution impacts of extraction and refinement, which are extensive.
Toxic chemical release during manufacture is another significant source of the negative environmental impact of plastics. A whole host of carcinogenic, neurotoxic, and hormone-disruptive chemicals are standard ingredients and waste products of plastic production, and they inevitably find their way into our ecology through water, land, and air pollution. Some of the more familiar compounds include vinyl chloride (in PVC), dioxins (in PVC), benzene (in polystyrene), phthalates and other plasticizers (in PVC and others), formaldehyde, and bisphenol-A, or BPA (in polycarbonate). Many of these are persistent organic pollutants (POPs)—some of the most damaging toxins on the planet, owing to a combination of their persistence in the environment and their high levels of toxicity. These are discussed in greater detail later in this chapter as a consideration of human health; however, their unmitigated release into the environment affects all terrestrial and aquatic life with which they come into contact.
A sea change in building technology arrived in the 1950s with the “Age of Plastic.” Industrial development of fossil fuels into a wide array of plastics changed formulations in everything from insulation to mechanicals to paint, and plastic is still a ubiquitous component of every building assembly. Unfortunately, the impacts of plastic production in its many forms are heavy in every phase of its life cycle. While there is a common general understanding that plastics have negative ecological associations, a closer understanding of what types of plastics create what types of impacts will empower us to improve the toxic footprint of our buildings.
Plastics are not inherently bad, and they have many redeeming ecological features; in fact, many of the techniques we utilize in our designs involve targeted use of plastic products. Their durability and low maintenance reduce material replacement, their light weight reduces shipping energy, their formulation into glue products allows for the creation of engineered lumber and sheet products from recycled wood, and their formulation into superior insulation and sealant products improves the energy performance of our structures.
The feedstock of plastic is primarily petroleum- or natural-gas-derived, although bio-plastics are making inroads in the overall market share of plastic products. Obvious issues emerge regarding the finite amount of available petroleum resources, as well as the pollution associated with oil extraction and refinement; the massive Gulf Coast oil spill of 2010 is only one of the more notorious of the many ecologically devastating accidents that are not frequently considered in addition to the standard pollution impacts of extraction and refinement, which are extensive.
Toxic chemical release during manufacture is another significant source of the negative environmental impact of plastics. A whole host of carcinogenic, neurotoxic, and hormone-disruptive chemicals are standard ingredients and waste products of plastic production, and they inevitably find their way into our ecology through water, land, and air pollution. Some of the more familiar compounds include vinyl chloride (in PVC), dioxins (in PVC), benzene (in polystyrene), phthalates and other plasticizers (in PVC and others), formaldehyde, and bisphenol-A, or BPA (in polycarbonate). Many of these are persistent organic pollutants (POPs)—some of the most damaging toxins on the planet, owing to a combination of their persistence in the environment and their high levels of toxicity. These are discussed in greater detail later in this chapter as a consideration of human health; however, their unmitigated release into the environment affects all terrestrial and aquatic life with which they come into contact.
Answered by
2
Harmful effects of plastic:-1. Plastic is non-biodegradable due to which they remain as such and clog the sewer system.2. Chemicals in plastic can cause reduction of lung function, increased resistance to insulin and low sperm count . I hope it helpful for u .
Anonymous:
plzz marks as brillant answer.
Similar questions
Economy,
8 months ago
Political Science,
8 months ago
English,
8 months ago
English,
1 year ago
English,
1 year ago
Psychology,
1 year ago