Harmonic conjugate of u(x, y)- e' cosx is
Answers
Answered by
0
du/dx =e^x cos(y), d2u/dx2=e^x cos(y)
du/dy=-e^x sin(y), d2u/dy2= -e^x cos(y)
d2udx2+d2udy2=e^x cos(y)+ (-e^x cos(y))
d2udx2+d2udy2=0. .. U is the harmonic function
Ux=Vy
.:Vy=e^x cos(y).
f(z)=u+iv=e^x cos(y)+i(e^x cos(y))=e^z+c
f(z)=e(x+iy)=e^x*eiy=e^x(
cosy+icos(y))=e^xcosy+i
e^xcos(y).
Similar questions