Math, asked by 95hfdf, 1 year ago

Harpreet borrowed ₹2000 from her friend at 12% per annum simple interest.She lent it to alam at the rate but compounded annually find her gain after 2 years

Answers

Answered by rakshikamalik01
3

Answer:

therefore Harpreet will have a gain of Rs.28.8 .

Step-by-step explanation:

For Harpreet,

I = P*R*T/100

I = 2000 * 12* 2/100

I = 20 *12*2

I= 480

A=I+P

A=480 +2000

A=2480


For harpreet's friend

A=P(1+R/100)^{2}[/tex]

A=2000(1+12/100)^2

A=2000*112/100*112/100

A=2*112*112/10

A=25088/10

A=2508.8

profit harpreet will get = 2480-2508.8

                    ANSWER  =28.8

Answered by SANDHIVA1974
17

⚝ Given :

➙ Abhinav borrowed Rs 2,000 from her friend at 12% per annum simple interest.She lent it to Amar at the same rate but compounded annually.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

⚝ To Find :

➙ Profit after two years .

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

⚝ Solution :

Formula Used :

\large{\blue{\bigstar}} \: \: \: {\underline{\boxed{\red{\sf{ S.I = \dfrac{P \times R \times T}{100}}}}}}

\large{\blue{\bigstar}} \: \: \: {\underline{\boxed{\red{\sf{ C.I = P \bigg(1 + \dfrac{R}{100} \bigg)^T - P}}}}}

\qquad{━━━━━━━━━━━━━━━━━━}

~ Calculating the Simple Interest :

{\longmapsto{\qquad{\sf{ S.I = \dfrac{ P \times R \times T}{100}}}}} \\ \\ {\longmapsto{\qquad{\sf{ S.I = \dfrac{2000 \times 12 \times 2}{100}}}}} \\ \\ {\longmapsto{\qquad{\sf{ S.I = \dfrac{48000}{100}}}}} \\ \\ {\longmapsto{\qquad{\sf{ S.I = \cancel\dfrac{48000}{100}}}}} \\ \\ {\qquad{\sf{ Simple \: Interest \: = {\green{\sf{ Rs.480}}}}}}

~ Calculating the Compound Interest :

{\longmapsto{\qquad{\sf{ C.I = P \bigg(1 + \dfrac{R}{100} \bigg)^T - P}}}} \\ \\ {\longmapsto{\qquad{\sf{ C.I = 2000 \bigg(1 + \dfrac{12}{100} \bigg)^2 - 2000}}}} \\ \\ {\longmapsto{\qquad{\sf{ C.I = 2000 \times \bigg( \cancel\dfrac{112}{100} \bigg)^2 - 2000}}}} \\ \\ {\longmapsto{\qquad{\sf{ C.I = 2000 \times (1.12)² - 2000}}}} \\ \\ {\longmapsto{\qquad{\sf{ C.I = 2000 \times 1.2544 - 2000}}}} \\ \\ {\longmapsto{\qquad{\sf{ C.I = 2508.8 - 2000}}}} \\ \\ {\qquad{\sf{ Compound \: Interest \: = {\color{darkblue}{\sf{ Rs.508.8}}}}}}

\qquad{━━━━━━━━━━━━━━━━━━}

~ Calculating the Profit :

{\longmapsto{\qquad{\sf{Profit = C.I - S.I }}}} \\ \\ {\longmapsto{\qquad{\sf{ Profit = ₹\: 508.8 - ₹ \: 480}}}} \\ \\ {\qquad{\pink{\sf{ Profit \: = {\orange{\sf{ ₹ \: 28.8 }}}}}}}

\qquad{━━━━━━━━━━━━━━━━━━}

Therefore :

❝ Abhinav had a profit of ₹ 28.8 (approx). ❞

{\pink{\underline{\color{maroon}{✬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬✬}}}}

Similar questions