have at least two meals together with your parents. collect information about the people who work hard to provide you à meal.
Answers
The Cell Cycle, Mitosis and Meiosis
Topic related resources
The cell cycle
Actively dividing eukaryote cells pass through a series of stages known collectively as the cell cycle: two gap phases (G1 and G2); an S (for synthesis) phase, in which the genetic material is duplicated; and an M phase, in which mitosis partitions the genetic material and the cell divides.
22-Cell-cycle.gif
G1 phase. Metabolic changes prepare the cell for division. At a certain point - the restriction point - the cell is committed to division and moves into the S phase.
S phase. DNA synthesis replicates the genetic material. Each chromosome now consists of two sister chromatids.
G2 phase. Metabolic changes assemble the cytoplasmic materials necessary for mitosis and cytokinesis.
M phase. A nuclear division (mitosis) followed by a cell division (cytokinesis).
The period between mitotic divisions - that is, G1, S and G2 - is known as interphase.
Mitosis
Mitosis is a form of eukaryotic cell division that produces two daughter cells with the same genetic component as the parent cell. Chromosomes replicated during the S phase are divided in such a way as to ensure that each daughter cell receives a copy of every chromosome. In actively dividing animal cells, the whole process takes about one hour.
The replicated chromosomes are attached to a 'mitotic apparatus' that aligns them and then separates the sister chromatids to produce an even partitioning of the genetic material. This separation of the genetic material in a mitotic nuclear division (or karyokinesis) is followed by a separation of the cell cytoplasm in a cellular division (or cytokinesis) to produce two daughter cells.
In some single-celled organisms mitosis forms the basis of asexual reproduction. In diploid multicellular organisms sexual reproduction involves the fusion of two haploid gametes to produce a diploid zygote. Mitotic divisions of the zygote and daughter cells are then responsible for the subsequent growth and development of the organism. In the adult organism, mitosis plays a role in cell replacement, wound healing and tu
Answer:
The Cell Cycle, Mitosis and Meiosis
Topic related resources
The cell cycle
Actively dividing eukaryote cells pass through a series of stages known collectively as the cell cycle: two gap phases (G1 and G2); an S (for synthesis) phase, in which the genetic material is duplicated; and an M phase, in which mitosis partitions the genetic material and the cell divides.
22-Cell-cycle.gif
G1 phase. Metabolic changes prepare the cell for division. At a certain point - the restriction point - the cell is committed to division and moves into the S phase.
S phase. DNA synthesis replicates the genetic material. Each chromosome now consists of two sister chromatids.
G2 phase. Metabolic changes assemble the cytoplasmic materials necessary for mitosis and cytokinesis.
M phase. A nuclear division (mitosis) followed by a cell division (cytokinesis).
The period between mitotic divisions - that is, G1, S and G2 - is known as interphase.
Mitosis
Mitosis is a form of eukaryotic cell division that produces two daughter cells with the same genetic component as the parent cell. Chromosomes replicated during the S phase are divided in such a way as to ensure that each daughter cell receives a copy of every chromosome. In actively dividing animal cells, the whole process takes about one hour.
The replicated chromosomes are attached to a 'mitotic apparatus' that aligns them and then separates the sister chromatids to produce an even partitioning of the genetic material. This separation of the genetic material in a mitotic nuclear division (or karyokinesis) is followed by a separation of the cell cytoplasm in a cellular division (or cytokinesis) to produce two daughter cells.
In some single-celled organisms mitosis forms the basis of asexual reproduction. In diploid multicellular organisms sexual reproduction involves the fusion of two haploid gametes to produce a diploid zygote. Mitotic divisions of the zygote and daughter cells are then responsible for the subsequent growth and development of the organism. In the adult organism, mitosis plays a role in cell replacement, wound healing and tu