Biology, asked by swechha1, 1 year ago

Hay brainly users solve this problem If the ratio between a and b is
 \frac{a {}^{n + 1} + b {}^{n + 1}  }{a {}^{n}  + b {}^{n} }
mean then a value of n is known ?


Answers

Answered by SAngela
35
Hay dear user -

we know that formula for GP => √ab

so,

 \sqrt{ab}  =  \frac{a  {}^{n + 1} + b {}^{n + 1} }{a {}^{n}   +  b {}^{n} }

if we square both sides then we can get

{ab}   =  \frac{(a {}^{n + 1} + b {}^{n + 1}  ) {}^{2} }{(a {}^{n} + b {}^{n} ) {}^{2} }


ab(a {}^{2n}  + b {}^{2n}  + 2a {}^{n} b {}^{n} ) = a {}^{2n +2 + }  + b {}^{2n + 2}  + 2a {}^{n + 1} b {}^{n + 1}


aba {}^{2n}  + abb {}^{2n}  + 2a {}^{n} b {}^{n}  \times ab = a {}^{2n + 1}  \times a + bb {}^{2n + 1}  + 2a {}^{n + 1} b {}^{n + 1}



ba {}^{2n + 1}  + ab {}^{2n + 1}  + 2a {}^{n + 1} b {}^{n + 1}  = aa {}^{2n + 1}  + bb {}^{2n + 1}  + 2a {}^{n + 1} b {}^{n + 1}



ba {}^{2n + 1}  - aa {}^{2n + 1}  = bb {}^{2n + 1}  - ab {}^{2n + 1}



a {}^{2n + 1} (b - a) = b {}^{2n + 1}(b - a)



 \frac{a {}^{2n + 1}  }{b {}^{2n + 1} }   = 1

if we substitute both powers then,

( \frac{a}{b} ) {}^{2n + 1}  = ( \frac{a}{b} ) {}^{0}



2n + 1 = 0 \\  \\ 2n =  - 1 \\  \\ n =  -  \frac{1}{2}

PratikRatna: nice answer
SAngela: tysm:)
PratikRatna: :)
Answered by krishna9441798868
0

This is not mathematics

Similar questions