Math, asked by chaudharyvinit96, 11 months ago

hcf and lcm of two number are 48 and 384 respectively.if one of the number is 96 . find the other number.​

Answers

Answered by TheBrainlyWizard
104

\bf{\underline{\underline{Given}}}

\mathsf{\star\: \: HCF\: of\:two\:no's = 48}\\

\mathsf{\star\: \: LCM\: of\:two\:no's = 384}

\mathsf{\star\: \: One\:number = 96}

\bf{\underline{\underline{To\:find}}}

\mathsf{\star\:\: The \:other\: number}\\ \\

\bf{\underline{\underline{Solution}}}

Let the two numbers be a and b respectively

where a = 96 (Given)

We know that

\mathtt{HCF × LCM = Product\: of \: a \: and \: b}

\mathtt{\implies\: 48 × 384 = a × b}\\

\mathtt{\implies\: 48 × 384 = 96 × b}\\

\mathtt{\implies\: \frac{48 × 384}{96} = b}\\

\mathtt{\implies\: \green{b = 192}}

∴ The other number (b) = 192

Answered by Anonymous
8

\huge{\tt{\underline{\pink{\: Given:-}}}}

HCF of the two number= 48

LCM of the two number = 384

The one number = 96

{\tt{\red{\: To \: Find:-}}}

The Other number =?

\huge{\tt{\pink{\underline{\: solution:-}}}}

We know the formula to solve,

{\tt{ HCF × LCM = product \: of \: a \: and \: b}} \\   \\

{\implies{\tt{ 48 × 384= a×b}}} \\   \\

{\implies{\tt{ 48 × 384= 96×b}}} \\   \\

{\implies{\tt{\: or, \: b = \cancel\frac{48× 384} {96}}}} \\   \\

{\implies{\tt{ \: b = 192}}} \\   \\

\implies\boxed   {\green{ \: 192}}  \\  \\

Similar questions