Math, asked by Anonymous, 2 months ago

ᴛʜᴇ HCF ᴀɴᴅ LCM ᴏғ ᴛᴡᴏ ɴᴜᴍʙᴇʀs ᴀʀᴇ 12 ᴀɴᴅ 5040 , ʀᴇsᴘᴇᴄᴛɪᴠᴇʟʏ . ɪғ ᴏɴᴇ ᴏғ ᴛʜᴇ ɴᴜᴍʙᴇʀs ɪs 144 , ғɪɴᴅ ᴛʜᴇ ᴏᴛʜᴇʀ ɴᴜᴍʙᴇʀ?​

Answers

Answered by OoINTROVERToO
0

\begin{gathered} \bold{ \pmb{GIVEN}} \\ \red{ \tt HCF \: of \: two \: numbers} = 12 \\ \tt \red{ \: LCM \: of \: two \: number} = 5040 \\ \tt \red{ \: One \: number }= 144 \\ \\ \\ \bold{\pmb{TO \: \: FINd}} \\ \bf{ \: Other \: number} \\ \\ \\ \bold{ \pmb{SOLUTION}} \\ \\ \small{\boxed{\cal{LCM \times HCF = Product \: of \: two \: numbers}}} \\ \\ \sf \: Let \: the \: other \: number \: be \: b \\ \rm 12 \times 5040 = 144 \times b \\ \rm 60480 = 144b \\ \rm \: b = \dfrac{60480}{144} \\ \\ \boxed{\bold {\pmb{\blue{\underline{ \dag \: \: Other \: \: number = 420}}}}}\end{gathered}

Answered by AngeIianDevil
36

______________________

Given

HCF of two numbers = 12

LCM of two numbers = 5040

one number = 144

To find other number

Solution

LCM × HCF =Product of two numbers.

let the other number be b

12 × 5040 = 144 × b

60480 = 144b

b = 60480

144

_______________________

Similar questions