Math, asked by CuteSmiIe, 9 months ago

Hcf of hcf and lcm of two numbers are 9 and 360 respectively if one number is 45 find the other number​

Answers

Answered by WorstAngeI
29

\bf{\underline{\underline \blue{Solution:-}}}

\sf\underline{\red{\:\:\: AnswEr:-\:\:\:}}

The other required number = 72

\sf\underline{\red{\:\:\: Given:-\:\:\:}}

H.C.F and L.C.M of two numbers are 9 and 360 respectively.If ine number is 45.

\sf\underline{\red{\:\:\: Need\:To\: Find:-\:\:\:}}

The other required number = ?

\bf{\underline{\underline \blue{Explanation:-}}}

\sf\underline{\red{\:\:\: Formula\:Used\: Here:-\:\:\:}}

\bigstar \:  \boxed{ \sf \: HCF \times LCM = a \times b} \\\\

\sf\underline{\green{\:\:\: Now,Putting\:the\: values:-\:\:\:}}

\dashrightarrow \sf {12 \times 360 = 60 \times b} \\\\

\dashrightarrow \sf {\frac{12 \times 360}{60} = b} \\\\

\dashrightarrow \sf {\dfrac{12 \times \cancel{360}}{ \cancel{60}} = b} \\\\

\dashrightarrow \sf {b = 72} \\\\

\sf\underline{\red{\:\:\: ThereFore:-\:\:\:}}

The other required number is 72.

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

Some more Information:

H.C.F ➪ Highest Common Factor.

L.C.M ➪ Least Common Multiple.

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

Answered by omsamarth4315
57

Answer:

Answer :-

other no. is 72 .

________________________

Given:

H .C .F of two numbers are 9 and 360

To Find:

The other number .

Solution:

by formula :-

HCF × LCM of two numbers = product of the two numbers

HCF × LCM = 9 × 360 .

Given in question, one of the numbers is 45

Let the another number be x

Therefore, substituting the terms in the above formula,  

9 × 360 = 45 × x .

x =  \frac{9 \times 360}{45}

x = 72 \: .

therefore, other number is 72 .

Similar questions