Math, asked by adhivya240398, 19 days ago

HCF of ((x^(2)-9)(x-3))/(4) and (x^(2)+6x+9)/(8) is

Answers

Answered by laxmi1783
0

Answer:

1st exp=x2-9

        =(x+3)(x-3)

2nd exp=x2-6x+9

          =x2-3x-3x+9

             =x(x-3)-3(x-3)

            =(x-3)(x-3)

hcf=(x-3)

Step-by-step explanation:

Answered by solutions01
3

Answer: \frac{x+3}{8}

Step-by-step explanation:

                               HCF of Fraction =\frac{HCF of Numerator}{LCM of Denominator}

1st expression:

                            \frac{(x^{2} -9)(x-3)}{4} = \frac{(x^{2} -3^2)(x-3)}{4}

we know, (a^2-b^2)=(a-b)(a+b)

          Therefore, \frac{(x^{2} -3^2)(x-3)}{4} = \frac{(x-3)(x+3)(x-3)}{4} = \frac{(x+3)(x-3)^2}{4}

2nd expression:

                          \frac{x^2+6x+9}{8}

we know, (a+b)^2=a^2+2ab+b^2

           Therefore, \frac{x^2+6x+9}{8} = \frac{(x+3)^2}{8}

HCF of the Numerators = (x+3)

LCM of the Denominators:

      4 = 2^2\\8= 2^3\\LCM = 2^3 = 8

Answer:

                   HCF of Fraction =\frac{HCF of Numerator}{LCM of Denominator} = \frac{x+3}{8}

             

Similar questions