Math, asked by Kaviraj721, 10 months ago

HCG
38.
If the angle of elevation of a Cloud from a point hm above a
lake is d-and the angle of depression of its reflection in
the lake is B. prove that the distance of the cloud from the
point of observation is ah secar COR)
tanp-tand​

Attachments:

Answers

Answered by Nereida
13

\huge\star{\green{\underline{\mathfrak{Answer :-}}}}

Figure is in attachment.

Given :-

  • A is the point h m above the lake
  • The angle of elevation of the cloud from point A is alpha
  • The angle of depression of its reflection in the lake from the point A is beta
  • A is the point of observation

To prove:-

\tt{AB=\dfrac{2\:h\:sec\:\alpha}{tan\:\beta-tan\:\alpha}}

Proof:-

We know that,

\huge\leadsto{\boxed{\tt{tan\:\theta=\dfrac{Perpendicular}{Base}}}}

So, In ∆ ABC,

\leadsto\tt{tan\:\alpha=\dfrac{x}{AB}}

\leadsto\tt{AB=\dfrac{x}{tan\:\alpha}}.....(1)

And, In ∆ ABD,

\leadsto\tt{tan\:\beta=\dfrac{x+2h}{AB}}

\leadsto\tt{AB=\dfrac{X+2h}{tan\:\beta}}.....(2)

Now, by (1) and (2),

\leadsto\tt{AB=\dfrac{x}{tan\:\alpha}=\dfrac{x+2h}{tan\:\beta}}

\leadsto\tt{x\:tan\:\alpha=(X+2h)tan\:\alpha}

\leadsto\tt{x\:tan\:\alpha=X\:tan\:\alpha+2h\:tan\:\alpha}

\leadsto\tt{x\:tan\:\alpha-tan\:\beta=2h\:tan\:\alpha}

\leadsto\tt{x(tan\:\beta-tan\:\alpha)=2h\:tan\:\alpha}

So,

\leadsto\tt{x=\dfrac{2h\times tan\:\alpha}{tan\:\beta-tan\:\alpha}}

Now, we know that,

\huge\leadsto{\boxed{\tt{sin\:\theta=\dfrac{Perpendicular}{Hypertenuse}}}}

So, In ∆ ABC,

\leadsto\tt{sin\:\alpha=\dfrac{x}{AC}}

Finding x,

\leadsto\tt{x=sin\:\alpha\times AC}

Now putting the value of x,

\leadsto\tt{sin\:\alpha\times AC=\dfrac{2h\times tan\:\alpha}{tan\:\beta}}

Now,

\leadsto\tt{AC=\dfrac{2h\times \dfrac{\cancel{sin\:\alpha}}{cos\:\alpha}}{tan\:\beta\times \cancel{sin\:\alpha}}}

Now,

\huge\leadsto{\boxed{\red{\tt{AB=\dfrac{2\:h\:sec\:\alpha}{tan\:\beta-tan\:\alpha}}}}}

Hence proved.

\rule{200}2

Formulas Used:-

  • \tt{sin\:\theta=\dfrac{Perpendicular}{Hypotenuse}}
  • \tt{tan\:\theta=\dfrac{Perpendicular}{Base}}
  • \tt{tan\:\theta=\dfrac{sin\:\theta}{cos\:\theta}}
  • \tt{sec\:\theta=\dfrac{1}{cos\:\theta}}

\rule{200}4

Attachments:
Answered by RvChaudharY50
36

||✪✪ QUESTION ✪✪||

If the angle of elevation of a cloud from point h metres above a lake is α and the angle of depression of its reflection in the lake is β, prove that the distance of the cloud from the point of observation is :- 2hsecα/(Tanβ - Tanα)

|| ✰✰ ANSWER ✰✰ ||

❁❁ Refer To Image First .. ❁❁

|| ★★ FORMULA USED ★★ ||

  • Tan@ = Perpendicular / Base
  • Sin@ = Perpendicular / Hypotenuse
  • Tan@ = (sin@/cos@)
  • (1/cos@) = sec@ .

Attachments:

Anonymous: great
Similar questions