Math, asked by czamiranicolebasco, 2 months ago

he area of each figure using the formula,
10 m
m
A = (bl+ b2h
2
15 m
A = 3 (D x h)​

Answers

Answered by amritachhetri912
6

Answer:

The value of \tan 60 ^ { \circ } = \sqrt { 3 }tan60

=

3

To find:

The value of \tan 60 ^ { \circ }tan60

Solution:

We know that

\tan ( A + B ) = \frac { \tan A + \tan B } { ( 1 - \tan A \cdot \tan B ) }tan(A+B)=

(1−tanA⋅tanB)

tanA+tanB

When A=B

\tan ( A + A ) = \frac { \tan A + \tan A } { 1 - \tan ^ { 2 } A }tan(A+A)=

1−tan

2

A

tanA+tanA

By using A = 30^{\circ}30

\begin{gathered}\begin{array} { c } { \tan 60 ^ { \circ } = \frac { \tan 30 ^ { \circ } + \tan 30 ^ { \circ } } { 1 - \tan ^ { 2 } 30 ^ { \circ } } } \\\\ { \tan 60 ^ { \circ } = \frac { \frac { 1 } { \sqrt { 3 } + } \left( \frac { 1 } { \sqrt { 3 } } \right) } { \left( 1 - \left( \frac { 1 } { \sqrt { 3 } } \right) ^ { 2 } \right) } = \frac { \left( \frac { 2 } { \sqrt { 3 } } \right) } { \frac { 2 } { 3 } } = \frac { 2 } { \sqrt { 3 } } \times \frac { 3 } { 2 } = \sqrt { 3 } } \end{array}\end{gathered}

tan60

=

1−tan

2

30

tan30

+tan30

tan60

=

(1−(

3

1

)

2

)

3

+

1

(

3

1

)

=

3

2

(

3

2

)

=

3

2

×

2

3

=

3

Attachments:
Similar questions