Physics, asked by Rajuyadav3554, 9 months ago

He only force acting on a 2 kg body as it moves along the positive x axis has component fx=-6x n where x is in metre. the velocity of the body at x=3m is 8 m/s, the velocity of the body at x=4 m is

Answers

Answered by shadowsabers03
8

The force acting on the body has the component,

\longrightarrow\sf{F=-6x}

As the force is varying with displacement, the work done by this force is,

\displaystyle\longrightarrow\sf{W=\int-6x\ dx}

\displaystyle\longrightarrow\sf{W=-6\cdot\dfrac{x^2}{2}+c}

\displaystyle\longrightarrow\sf{W=-3x^2+c}

This work done is stored in the body as its kinetic energy. Therefore,

\displaystyle\longrightarrow\sf{K=-3x^2+c}

\displaystyle\longrightarrow\sf{\dfrac{1}{2}\,mv^2=-3x^2+c}

Since the mass of the body is 2 kg \sf{(m=2\ kg),}

\displaystyle\longrightarrow\sf{v^2=-3x^2+c\quad\quad\dots(1)}

Given that the body has velocity \sf{8\ m\,s^{-1}} at \sf{x=3\ m.} Then,

\displaystyle\longrightarrow\sf{v^2=8^2}

From (1),

\displaystyle\longrightarrow\sf{-3(3^2)+c=64}

\displaystyle\longrightarrow\sf{-27+c=64}

\displaystyle\longrightarrow\sf{c=91}

Then (1) becomes,

\displaystyle\longrightarrow\sf{v^2=-3x^2+91}

Hence at \sf{x=4\ m,}

\displaystyle\longrightarrow\sf{v^2=-3(4^2)+91}

\displaystyle\longrightarrow\sf{v^2=-48+91}

\displaystyle\longrightarrow\sf{v^2=43}

\displaystyle\longrightarrow\underline{\underline{\sf{v=\sqrt{43}\ m\,s^{-1}}}}

\displaystyle\longrightarrow\underline{\underline{\sf{v^2=6.56\ m\,s^{-1}}}}

Similar questions