Math, asked by arvindgamer2007, 30 days ago

he points which divides the line segment of points P(-1, 7) and (4, -3) in the ratio of 2:3 is​

Answers

Answered by FiercePrince
21

Given : We've provided with two endpoints of line segement are ( -1 , 7 ) and ( 4 , -3 ) .

Need To Find : The point which devides the line segment in the ratio of 2 : 3 ?

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

❍ Let's Consider the point which devides the line segment in the ratio of 2 : 3 be ( x , y ) .

⠀⠀▪︎⠀⠀We know that , the co – ordinantes of the point ( x , y ) Dividing the line segment joining the two points ( x₁ , y₁ ) and ( x₂ , y₂ ) , in the ratio of m₁ : m₂ is Section Formula and It's given by ,

\qquad \:\star \:\:\underline{\boxed{\pmb{\sf { \: \: Section \: \: \:=\:\Bigg\lgroup \: \dfrac{ m_1 \: x_2 \:\: +\: m_2 \:x_1 \:}{m_2 \:+ \:m_1 \:}  \:, \:  \dfrac{ m_1 \: y_2 \:\: +\: m_2 \:y_1 \:}{m_2 \:+ \:m_1 \:}  \:\Bigg\rgroup  \:}}}}\\\\

Where ,

  • x₁ = -1 ,
  • y₁ = 7 ,
  • x₂ = 4 ,
  • y₂ = -3 &,
  • m₁ : m₂ = 2 :3

\\\\ \qquad :\implies \sf \: \: ( \: x \:,\:y\:) \: \: \:=\:\Bigg( \: \dfrac{ m_1 \: x_2 \:\: +\: m_2 \:x_1 \:}{m_2 \:+ \:m_1 \:}  \:, \:  \dfrac{ m_1 \: y_2 \:\: +\: m_2 \:y_1 \:}{m_2 \:+ \:m_1 \:}  \:\Bigg) \\\\\\ \qquad :\implies \sf \: \: ( \: x \:,\:y\:) \: \: \:=\:\Bigg( \: \dfrac{  2\: ( 4 ) \:\: +\: 3 \:( -1 ) \:}{ 3 \:+ \:2 \:}  \:, \:  \dfrac{ 2 \: ( -3 ) \:\: +\: 3 \: ( 7 )  \:}{ 3\:+ \:2 \:}  \:\Bigg) \\\\\\ \qquad :\implies \sf \: \: ( \: x \:,\:y\:) \: \: \:=\:\Bigg( \: \dfrac{  8 \:\: +\: ( -3  ) \:}{ 5 \:}  \:, \:  \dfrac{   \:\: (-6)\: +\: 21  \:}{ \:5 \:}  \:\Bigg) \\\\\\ \qquad :\implies \sf \: \: ( \: x \:,\:y\:) \: \: \:=\:\Bigg( \: \dfrac{  5 \:}{ 5 \:}  \:, \:  \dfrac{ 15  \:}{ 5 \:}  \:\Bigg) \\\\\\ \qquad :\implies \underline {\boxed{\pmb{\frak{ \: \: ( \: x \:,\:y\:) \: \: \:=\: \: (\:1\:  \:, \:  3\:)  \:}}}}\:\:\bigstar \:\\\\

\qquad \therefore \:\underline {\sf Hence, \: \:The\: \:Point\: \:which \:\:devides\: \:the \:\:line\: \:segment\: \:in\: \: 2\: :\: 3 \:\:is \:\:\pmb{\bf \:(\:1\: ,\: 3 \:)\:}\:.\:}\\\\

Answered by hukam0685
0

Step-by-step explanation:

Given: P(-1,7) and Q(4,-3)

To find: Find the point which divides the line segment in ratio 2:3.

Solution:

Tip: Section formula

If line segment by joining the points P(x_1,y_1) and Q(x_2,y_2) is divided by the S(x,y) in m:n ratio,then coordinates of S are given by

\boxed{\bold{\red{x =  \frac{mx_1 + nx_2}{m + n} }}} \\  \\ \boxed{\bold{\green{y =  \frac{my_1 + ny_2}{m + n}}}}  \\

Here,

Points are P(-1,7) and Q(4,-3) ,ratio is 2:3

apply the values in the formula

x =  \frac{2(4) + 3( - 1)}{2 + 3}  \\

x =  \frac{8 - 3}{5}  \\

x =  \frac{5}{5}  \\

\bold{\red{x = 1 }}\\

by the same way,find y

y =  \frac{3 (7)+ 2( - 3)}{3 + 2}  \\

y =  \frac{21 - 6}{5}  \\

y =  \frac{15}{5}  \\

\bold{\green{y = 3 }}\\

Coordinates of S are (1,3).

Final answer:

Coordinates of S are (1,3).

Hope it helps you.

To learn more on brainly:

A point P(-2,3) divides the line segment joining the

paints A(-4,5) and B(3,-2) in the ratio of

https://brainly.in/question/22128783

Point R divides the line segment joining the points A(4,2)and B(4,-7)such that AC/AB =1/3.if C lies on the line ...

https://brainly.in/question/7543990

Similar questions