Math, asked by giraddimanju30, 1 month ago

he solution set of the inequality ||x – 2| – 4| ≥ 1 is

Answers

Answered by Anonymous
10

Solution :-

 \footnotesize \sf \implies | |x - 2| - 4 |  \geqslant 1

 \footnotesize \sf \implies |x - 2| - 4   \geqslant  \pm1

 \footnotesize \sf \implies |x - 2| - 4   \geqslant  1; |x - 2|  - 4 \geqslant  - 1

 \footnotesize \sf \implies |x - 2|    \geqslant  1 + 4; |x - 2|   \geqslant  - 1 + 4

 \footnotesize \sf \implies |x - 2|    \geqslant  5; |x - 2|   \geqslant    3

 \footnotesize \sf \implies x - 2  \geqslant   \pm \: 5; x - 2  \geqslant    \pm 3

 \footnotesize \sf \implies x - 2  \geqslant   \: 5;x - 2 \geqslant  - 5 ;x - 2  \geqslant    3;x - 2 \geqslant  - 3

 \footnotesize \sf \implies x   \geqslant   \: 5 + 2;x  \geqslant  - 5 + 2 ;x   \geqslant 3 + 2;x \geqslant  - 3 + 2

  \footnotesize \sf\implies   \purple{\boxed{ \sf x   \geqslant   \: 7}; \boxed{ \sf x  \geqslant  - 3} ; \boxed{ \sf x   \geqslant 5}; \boxed{ \sf{x \geqslant  - 1}}}

Plot these all points on a number line and substitute values between the intervals and check whether the interval is a solution set or not.

For interval ( 7, ∞ ) :-

We can substitute any value greater than 7 in the inequity.

Substitute x = 8

\footnotesize\leadsto\sf ||x-2|-4|  \geqslant 1

\footnotesize\leadsto\sf ||8 - 2|-4|  \geqslant 1

\footnotesize\leadsto\sf ||6|-4|  \geqslant 1

\footnotesize\leadsto\sf |6-4|  \geqslant 1

\footnotesize\leadsto\sf |2|  \geqslant 1

\footnotesize\leadsto\sf 2 \geqslant 1

It is true

For interval ( 5 , 7 ) :-

We can substitute any value greater than 5 and smaller than 7.

Substitute x = 6

\footnotesize\leadsto\sf ||x-2|-4|  \geqslant 1

\footnotesize\leadsto\sf ||6 - 2|-4|  \geqslant 1

\footnotesize\leadsto\sf ||4|-4|  \geqslant 1

\footnotesize\leadsto\sf |4-4|  \geqslant 1

\footnotesize\leadsto\sf |0|  \geqslant 1

\footnotesize\leadsto\sf 0 \geqslant 1

It is not true so this is not a solution.

For interval ( -1, 5 ) :-

We can substitute any value greater than -1 and smaller than 5.

Substitute x = 0

\footnotesize\leadsto\sf ||x-2|-4|  \geqslant 1

\footnotesize\leadsto\sf || 0 - 2|-4|  \geqslant 1

\footnotesize\leadsto\sf || - 2|-4|  \geqslant 1

\footnotesize\leadsto\sf |2-4|  \geqslant 1

\footnotesize\leadsto\sf | - 2|  \geqslant 1

\footnotesize\leadsto\sf 2 \geqslant 1

It is true

For interval ( -3 , -1 ) :-

We can substitute any value greater than -3 and smaller than -1.

Substitute x = -2

\footnotesize\leadsto\sf ||x-2|-4|  \geqslant 1

\footnotesize\leadsto\sf || - 2-2|-4|  \geqslant 1

\footnotesize\leadsto\sf || -4|-4|  \geqslant 1

\footnotesize\leadsto\sf |4-4|  \geqslant 1

\footnotesize\leadsto\sf |0|  \geqslant 1

\footnotesize\leadsto\sf 0  \geqslant 1

It is false so not a solution.

For interval (-∞ , -3 ) :-

We can substitute any value smaller than -3.

Substitute x = -4

\footnotesize\leadsto\sf ||x-2|-4|  \geqslant 1

\footnotesize\leadsto\sf || - 4-2|-4|  \geqslant 1

\footnotesize\leadsto\sf || - 6|-4|  \geqslant 1

\footnotesize\leadsto\sf |6-4|  \geqslant 1

\footnotesize\leadsto\sf |2|  \geqslant 1

\footnotesize\leadsto\sf 2 \geqslant 1

It is true

\rule{300}{1}

We have checked for all the solution intervals but the critical points have not been checked such as -3 , -1 , 5 and 7. So let's check it out.

For -3 :-

\footnotesize\to ||x-2|-4|  \geqslant1

\footnotesize\to || - 3 - 2|-4|  \geqslant1

\footnotesize\to || - 5|-4|  \geqslant1

\footnotesize\to |5-4|  \geqslant1

\footnotesize\to | 1|  \geqslant1

\footnotesize\to 1 \geqslant1

It is true

For -1 :-

\footnotesize\to ||x-2|-4|  \geqslant1

\footnotesize\to || - 1-2|-4|  \geqslant1

\footnotesize\to || - 3|-4|  \geqslant1

\footnotesize\to |3-4|  \geqslant1

\footnotesize\to | - 1|  \geqslant1

\footnotesize\to 1 \geqslant1

It is true

For 5 :-

\footnotesize\to ||x-2|-4|  \geqslant1

\footnotesize\to ||5-2|-4|  \geqslant1

\footnotesize\to ||3|-4|  \geqslant1

\footnotesize\to |3-4|  \geqslant1

\footnotesize\to | - 1|  \geqslant1

\footnotesize\to 1 \geqslant1

It is true

For 7 :-

\footnotesize\to ||x-2|-4|  \geqslant1

\footnotesize\to ||7-2|-4|  \geqslant1

\footnotesize\to ||5|-4|  \geqslant1

\footnotesize\to |5-4|  \geqslant1

\footnotesize\to |1 |  \geqslant1

\footnotesize\to 1  \geqslant1

It is true

By combining our above results, the final solution :

 \sf \longrightarrow \footnotesize x \in ( -  \infty,-3] \cup[-1,5]\cup[7,\infty)

Attachments:
Similar questions