Math, asked by ONiharikaO, 11 months ago

heeeeeeyyyyyy ♥️♥️♥️


Prove that (sin alpha +cos alpha) (tan alpha+cot alpha) =sec alpha + cosec alpha​

Answers

Answered by kaushik05
131

 \huge \red{ \mathfrak{solution}}

To prove :

( \sin( \alpha )  +  \cos( \alpha ) )( \tan( \alpha )  +  \cot( \alpha ) ) =  \sec( \alpha )  +  \csc( \alpha )

LHS

( \sin( \alpha )  +  \cos( \alpha ) )( \tan( \alpha )  +  \cot( \alpha ) ) \\  \\  \leadsto \: ( \sin( \alpha )  +  \cos( \alpha ) )( \frac{ \sin( \alpha ) }{ \cos( \alpha ) }  +  \frac{ \cos( \alpha ) }{ \sin( \alpha ) }  \\  \\  \leadsto \: ( \sin( \alpha )  +  \cos( \alpha ) )(  \frac{  \sin ^{2} ( \alpha ) +  \cos ^{2} ( \alpha )   }{ \cos( \alpha ) \sin( \alpha )  } ) \\  \\  \leadsto \: ( \sin( \alpha )  +  \cos( \alpha ) )( \frac{1}{ \cos( \alpha ) \sin( \alpha )  } ) \\  \\  \leadsto \:  \frac{ \sin( \alpha ) }{ \cos( \alpha )  \sin( \alpha ) }  +  \frac{ \cos( \alpha ) }{ \cos( \alpha )  \sin( \alpha ) }  \\  \\  \leadsto \:  \cancel \frac{ \sin( \alpha ) }{ \sin( \alpha ) \:  \cos( \alpha )  }  +  \cancel \frac{ \cos( \alpha ) }{ \cos( \alpha )  \sin( \alpha ) }  \\  \\  \leadsto \frac{1}{ \cos( \alpha ) }  +  \frac{1}{ \sin( \alpha ) }  \\  \\  \leadsto \:  \sec( \alpha )  +  \csc( \alpha )

LHS = RHS

 \huge\boxed{ \green{ \bold{proved}}}

Formula used

sin^2@+cos^2@=1

tan@= sin@/cos@

cot@= cos@/sin@

Answered by Anonymous
71

(sin +cos )(tan+cot)

=(sin+cos)(sin/cos+cos/sin)

=(sin+cos)(sin^2+cos^2/sin cos)

=(sin+cos)(1/sin cos)

=sin/sin cos + cos/ sin cos

= 1/cos+1/sin

=sec + csc

LHS = RHS

Similar questions