Math, asked by ONiharikaO, 11 months ago

heeeeyyyyyyyyyy ❤


Prove that
(sin alpha +cos alpha) (tan alpha+cot alpha) =sec alpha + cosec alpha​

Answers

Answered by Anonymous
109

AnswEr :

To Prove :

( \sin( \alpha )  +  \cos( \alpha) ) ( \tan( \alpha )  +  \cot( \alpha ))  =  \sec( \alpha )  +  \csc( \alpha )

Proof :

\leadsto( \sin( \alpha )  +  \cos( \alpha) ) ( \tan( \alpha )  +  \cot( \alpha ))

\leadsto( \sin( \alpha )  +  \cos( \alpha) ) \bigg(  \dfrac{ \sin( \alpha ) }{ \cos( \alpha ) }   +   \dfrac{ \cos( \alpha ) }{ \sin( \alpha ) }  \bigg)

\leadsto( \sin( \alpha )  +  \cos( \alpha) ) \bigg(  \dfrac{ \sin ^{2} ( \alpha ) +   \cos^{2} ( \alpha ) }{ \cos( \alpha ) \sin( \alpha )  } \bigg)

\leadsto( \sin( \alpha )  +  \cos( \alpha) ) \bigg(  \dfrac{1}{ \cos( \alpha ) \sin( \alpha )  } \bigg)

\leadsto \dfrac{\sin( \alpha )  +  \cos( \alpha) }{ \cos( \alpha ) \sin( \alpha )  }

\leadsto \dfrac{ \cancel{\sin( \alpha )}}{ \cos( \alpha ) \cancel{\sin( \alpha )}} + \dfrac{\cancel{\cos( \alpha )}}{ \cancel{\cos( \alpha )} \sin( \alpha )  }

\leadsto \dfrac{1}{ \cos( \alpha ) } +  \dfrac{1}{ \sin( \alpha ) }

\leadsto \large{\sec( \alpha )  +  \csc( \alpha ) }

 \therefore \boxed{ \sin( \alpha )  +  \cos( \alpha) ) ( \tan( \alpha )  +  \cot( \alpha ))  =  \sec( \alpha )  +  \csc( \alpha ) }

Answered by RvChaudharY50
44

Hope this helps you ......

Attachments:
Similar questions