Math, asked by rhydham2594, 1 month ago

heena hold a japnese fan in her hand as shown in the figure. it is shaped like a sector of a circle and made of a thin material such as paper or feather. the inner and outer radii are 6cm and 10cm respectively. the fan has three colours i.e.pink, blue and black​

Answers

Answered by Rudragb1324
1

Answer:

The dimensions of equal strips are 25 cm, 25 cm and 14 cm. 

Then area of each strip=s(s−a)(s−b)(s−3)=32(32−25)(32−25)(32−14)=32×7×7×18=168

Then total the area of each type of paper needed=168×5=840 cm2

Step-by-step explanation:

HOPE this ANSWER will HELP you

PLEASE MARK ME BRAINLIEST PLEASE PLEASE PLEASE PLEASE PLEASE

BECAUSE I AM ON SAME RANK FORM

6 TO 7 MONTH

PLEASE...

Answered by isha00333
6

Note: The given question is incomplete as the question should be as shown in the question image.

Given: inner and outer radii are 6cm and 10cm respectively.

Part (i):

Find the area of the region having blue colour.

Area of the region having blue colour\[ = \frac{{80}}{{360}} \times \pi {\left( {10} \right)^2} - \frac{{80}}{{360}} \times \pi {\left( 6 \right)^2}\]

                                                               \[\begin{array}{l} = \frac{{80}}{{360}} \times \frac{{22}}{7} \times \left[ {{{10}^2} - {6^2}} \right]\\ = \frac{{80}}{{360}} \times \frac{{22}}{7} \times \left[ {\left( {10 + 6} \right)\left( {10 - 6} \right)} \right]\end{array}\]

                                                               \[\begin{array}{l} = \frac{{80}}{{360}} \times \frac{{22}}{7} \times 16 \times 4\\ = \frac{{112640}}{{2520}}\\ = 44.69c{m^2}\end{array}\]

Part (ii):

Find the area of the region having black colour.

Area of the region having blue colour\[ = \frac{{40}}{{360}} \times \pi {\left( {10} \right)^2} - \frac{{40}}{{360}} \times \pi {\left( 6 \right)^2}\]

                                                              \[\begin{array}{l} = \frac{{40}}{{360}} \times \frac{{22}}{7} \times \left[ {{{10}^2} - {6^2}} \right]\\ = \frac{{40}}{{360}} \times \frac{{22}}{7} \times \left[ {\left( {10 + 6} \right)\left( {10 - 6} \right)} \right]\end{array}\]

                                                              \[ = \frac{{40}}{{360}} \times \frac{{22}}{7} \times 16 \times 4\]

                                                              \[\begin{array}{l} = \frac{{56320}}{{2520}}\\ = 22.34c{m^2}\end{array}\]

Part (iii):

Draw the required figure.

Find the perimeter of the region having pink colour.

Perimeter of the region having

pink colour\[ = 2\left( {10 - 6} \right)\] + length of the arc having radius 6 cm +length of the

                                            arc having radius 10 cm.

                 \[ = 8 + \frac{{30}}{{360}} \times 2 \times \frac{{22}}{7} \times 6 + \frac{{30}}{{360}} \times 2 \times \frac{{22}}{7} \times 10\]

                 \[ = 8 + \frac{{7920}}{{2520}} + \frac{{13200}}{{2520}}\]

                 \[\begin{array}{l} = 8 + 31.42 + 5.238\\ = 16.38cm\end{array}\]

Part (iv):

Find the total angle of region having 6 cm radius/ or the shaded region.

\[{80^ \circ } + {40^ \circ } + {30^ \circ } + {150^ \circ } = {150^ \circ }\]

Find the area of region having 6 cm radius.

\[ = \frac{{150}}{{360}} \times \frac{{22}}{7} \times 6 \times 6\]

\[ = \frac{{11800}}{{2520}}\]

\[ = 47.14c{m^2}\]

Part (v):

Observe that the given shaded region has an angle of 150 degrees.

Therefore, it represents the minor sector.

Hence, the correct answer is option (a). i.e., minor sector.

                           

 

                                                             

                                                       

Attachments:
Similar questions