Science, asked by hritiknayak17, 8 months ago

height from the Earth surface greater than or equal to 3 5 7 8 0 kilometre such orbit is called ​

Answers

Answered by aarjit16061397
0

Answer:

Explanation:

A geosynchronous orbit (sometimes abbreviated GSO) is an orbit around Earth of a satellite with an orbital period that matches Earth's rotation on its axis, which takes one sidereal day (about 23 hours, 56 minutes, and 4 seconds).[1] The synchronization of rotation and orbital period means that, for an observer on Earth's surface, an object in geosynchronous orbit returns to exactly the same position in the sky after a period of one sidereal day. Over the course of a day, the object's position in the sky may remain still or trace out a path, typically in a figure-8 form,[citation needed] whose precise characteristics depend on the orbit's inclination and eccentricity. Satellites are typically launched in an eastward direction. A circular geosynchronous orbit is 35,786 km (22,236 mi) above Earth's surface. Those closer to Earth orbit faster than Earth rotates, so from Earth, they appear to move eastward while those that orbit beyond geosynchronous distances appear to move westward.

A special case of geosynchronous orbit is the geostationary orbit, which is a circular geosynchronous orbit in Earth's equatorial plane (that is, directly above the Equator). A satellite in a geostationary orbit appears stationary, always at the same point in the sky, to observers on the surface. Popularly or loosely, the term geosynchronous may be used to mean geostationary.[2] Specifically, geosynchronous Earth orbit (GEO) may be a synonym for geosynchronous equatorial orbit,[3] or geostationary Earth orbit.[4] Communications satellites are often given geostationary or close to geostationary orbits so that the satellite antennas that communicate with them do not have to move, but can be pointed permanently at the fixed location in the sky where the satellite appears.

A semi-synchronous orbit has an orbital period of half a sidereal day (i.e., 11 hours and 58 minutes). Relative to Earth's surface, it has twice this period and hence appears to go around Earth once every day. Examples include the Molniya orbit and the orbits of the satellites in the Global Positioning System.

Similar questions