helgULUI IJU V
10.
Clinky observes a tower PQ of height 'h' from a point A on the ground. She moves a
distance d towards the foot of the tower and finds that the angle of elevation has
direction and finals that the angle of elevation is 3 times at A. Prove that 36 =35
ing with the wind in a horizontal line at a height of
Answers
Let RB = x
In ? PBQ, angle BQR is exterior angle
∴ ∠PBQ = 2α – α = α
Now in ? PBQ, ∠ PBQ = ∠QPB
This gives PQ = QB = d
Similarly, ∠BRA is exterior angle of ? BQR
∴ ∠QBR = 3α - 2α = α
And ∠BRQ = π – 3 α (linear pair)
Now in ?BQR, by applying Sine rule, we get
d/sin (π - 3α) = 3d/4 / sin α = x/sin 2α
⇒ d/sin 3α = 3d/4 sin α = x/sin2 α
⇒ d/3 sin α – 4 sin3α = 3d/4 sin α = x/2sin α cos α
⇒ d/3 – 4 sin2 α = 3d/4 = x/2cos α . . . . . . . . . . . . . . . . . . . . . . (A)
From eq. (A), taking first two parts
⇒ d/3 – 4 sin2 α = 3d/4 ⇒ 4 = 9 – 12 sin2 α
⇒ sin2 α = 5/12 ⇒ cos2 α = 7/12
Also from eq. (A) using last two parts, we have
3d/4 = x/2 cos α ⇒ 4x2 = 9 d2 cos2 α
x2 = 9d2/4 = 7/12 = 21/16 d2 . . . . . . . . . . . . . . . . . . . . (B)
Again from ? ABR, we have sin 3α = h/x
⇒ 3 sin α – 4 sin3 α = h/x ⇒ sin α(3 – 4 sin2 α) = h/x
⇒ sin α [3 – 4 x 5/12] = h/x (using sin2 α = 5/12)
⇒ 4/3 sin α = h/x
Squaring both sides, we get
16/9 sin2 α = h2/x2 16/9 . 2/12 = h2/x2
(again using sin2 α = 5/12)
⇒ h2 = 4 . 5/9 . 3x2
⇒ h2 = 20/27 . 21/16 d2
[using value of x2 from eq. (B)]
⇒ h2 = 35/36 d2 ⇒ 36 h2 = 35 d2
Hence, 36 h2 = 35 d2.
Explanation:
let the angle of elevation at A be anglePAQ = a,then
anglePBQ =2a, anglePCQ =3a and AB=d;BC=3d/4
apply sine rule to PBC, sin(180-3a)/d = sina/(3d/4)
3/4 = sina/sin3a
3/4 = 1/(3-4sin^2a)
9-12sin^a = 4
sin^2a = 5/12
cos^2a = 7/12
from trianglePBQ,
sin2a=h/d
4sin^2a.cos^2a = h^2/d^2
4x(5/12)x(7/12)=h^2/d^2
36h^2 = 35d^2