Hell guys..solve this.
*Find* the value of a and b..
Answers
Given:
Let's rationalize the given number:
47 + 27√3 = a + b√3.
a = 47.
b = 27.
Therefore, the values of a and b are 47 and 27 respectively.
Terms used:
- Rationalisation: The conversion of a irrational number whose denominator has a irrational numbers into a real number where it's denominator is rational.
Step-by-step explanation:
Given:
\frac{5 + \sqrt{3} }{7 - 4 \sqrt{3} } = a + b \sqrt{3}
7−4
3
5+
3
=a+b
3
Let's rationalize the given number:
\begin{gathered}\frac{(5 + \sqrt{3}) \times (7 +4 \sqrt{3}) }{(7 - 4 \sqrt{3}) \times (7 + 4 \sqrt{3} ) } \\ \\ = \frac{35 + 20 \sqrt{3} + 7 \sqrt{3} + 12 }{ ( {7})^{2} - (4 { \sqrt{3}) }^{2} } \\ \\ = \frac{47 + 27 \sqrt{3} }{49 - 48} = 47 + 27 \sqrt{3}\end{gathered}
(7−4
3
)×(7+4
3
)
(5+
3
)×(7+4
3
)
=
(7)
2
−(4
3
)
2
35+20
3
+7
3
+12
=
49−48
47+27
3
=47+27
3
47 + 27√3 = a + b√3.
a = 47.
b = 27.
Therefore, the values of a and b are 47 and 27 respectively.
Terms used: