Math, asked by priya9531, 9 months ago

hello!!
answer this!​

Attachments:

Answers

Answered by kkhushikumari866
2

Answer:

hello

Step-by-step explanation:

plzz mark as brainiest and thanks

Attachments:
Answered by EnchantedGirl
35

☞︎︎︎TO PROVE :-

\\

✪ \frac{ \cos {}^{2} ( \theta) }{1 -  \tan( \theta) } +  \frac{ \sin( \theta) }{sin \theta \:  -  \cos( \theta) }  = 1 +  \sin( \theta)  \cos( \theta)

\\

PROOF :-

 \implies \:   \frac{\cos {}^{2} ( \theta) }{1 -  \frac{ \sin( \theta) }{ \cos( \theta) } } \:  \:  +   \frac{ { \sin }^{3}  \theta}{ \sin( \theta) -  \cos( \theta)  } \\  \\  \\  \implies  \frac{ \cos {}^{3} ( \theta) }{ \cos( \theta)  -  \sin( \theta) } +  \frac{ \sin {}^{3} ( \theta) }{ \sin( \theta) -  \cos( \theta)  }  \\  \\  \\  \implies \:  \frac{  \cos {}^{3} ( \theta)  -  \sin {}^{3} ( \theta) }{( \cos( \theta) -  \sin( \theta) )( \cancel{sin \theta \:  - cos \theta)} } \\  \\  \\  \implies \: \frac{ \cos( \theta)  -  \sin( \theta) ( \cos {}^{2} ( \theta)  +  \sin {}^{2} ( \theta) +  \cos( \theta) +  \sin( \theta)   )}{( \cos {}^{2} ( \theta) -  \sin {}^{2} ( \theta) ) }  \\  \\  \\  \implies \:  \boxed{1 +  \cos( \theta)  \sin( \theta) }

\\

HENCE PROVED :)

Similar questions