Math, asked by Anonymous, 1 year ago

#Hello Asgardians __/\__

#Solve the following :-

▶️ In a A.P. the sum of first ten terms is -150 and some of next ten terms is -550. Find the A.p...!!!

#Thank you for having a loook :)

Answers

Answered by Nєєнα
341

Step-by-step explanation:

Hope it helps u........♥♥

Attachments:

Anonymous: Osm ♥️
Answered by Anonymous
202

Solution:

Given:

⇒ Sum of ten terms = -150

⇒ Sum of next ten terms = -550

To Find:

⇒ A.P

Formula used:

\sf{\implies S_{n}=\dfrac{n}{2}[2a+(n-1)d]}

Let the first term of A.P be 'a' and common difference be 'd'.

\sf{\implies S_{10}=\dfrac{10}{2}[2a+(10-1)d]}

\sf{\implies -150=\dfrac{10}{2}[2a+9d]}

\sf{\implies -300=20a+90d}

\textsf{Take 10 common,}

\sf{\implies 2a+9d=-30\;\;\;\;........(1)}

\sf{\implies S_{20}=\dfrac{20}{2}[2a+(20-1)d]}

\sf{\implies -550-150=\dfrac{20}{2}[2a+19d]}

\sf{\implies -700=\dfrac{20}{2}[2a+19d]}

\sf{\implies -1400=40a+380d}

\textsf{Take 10 common,}

\sf{\implies 4a+38d=-140\;\;\;\;........(2)}

\sf{Now,\;we\;will\;get\;two\;equation,\;by\;substitution\;method\;we\;solve\;this\;equations,}

\sf{\implies 2a+9d=-30\;\;\;\;........(1)}

\sf{\implies 2a=-30-9d}

\sf{\implies a=\dfrac{-30-9d}{2}}

\textsf{Now, put the value of 'a' in Equation (2), we get}

\sf{\implies 4a+38d=-140\;\;\;\;........(2)}

\sf{\implies 4\Bigg[\dfrac{-30-9d}{2}\Bigg]+38d=-140}

\sf{\implies \dfrac{-120-36d}{2}+38d=-140}

\sf{\implies \dfrac{-120-36d+76d}{2}=-140}

\sf{\implies -120+40d=-280}

\sf{\implies 40d=-280+120}

\sf{\implies 40d=-160}

\sf{\implies d=\dfrac{-160}{40}}

{\boxed{\sf{\implies d=-4}}}

\textsf{Now, put the value of d in Equation (1), we get}

\sf{\implies 2a+9d=-30}

\sf{\implies 2a+9(-4)=-30}

\sf{\implies 2a-36=-30}

\sf{\implies 2a=-30+36}

\sf{\implies 2a=6}

\sf{\implies a=\dfrac{6}{2}}

{\boxed{\sf{\implies a=3}}}

\sf{Thus,\;the\;A.P\;is\;3,\;-1,\;-5...........}

Similar questions