Math, asked by Anonymous, 10 months ago

hello brainliacs

help me in solving this

Attachments:

Answers

Answered by Sharad001
37

Answer :-

\boxed{ \sf{ \frac{x - 1}{3}  =  \frac{y - 3}{5}  =  \frac{z -5 }{ - 1}} } \:

To Find :-

→ Equation of line .

Step - by - step explanation :-

Let , m be the required equation of line .

 \sf{given \: line} \:  \\  \sf{let } \\   \small\sf{l =  \frac{x - 2}{1}  = \frac{y - 2}{ - 1} =\frac{z - 3}{ - 2} }=\lambda \: ..(1)\\

Direction ratios of l are ( 1,-1,-2)

Given plane p is 2x - y+z - 4= 0

The normal of p is ( 2,-1,1)

Therefore the direction ratios of the required line are m ' =p × l

 \implies \sf{m '= 3 \hat{i} + 5 \hat{j}  - \hat{k}} \\

Hence , direction ratios of m ' are (3,5,-1)

Now,

From eq .(1)

 \implies \star \sf{ x - 2 =  \lambda } \:  \:  ,\:  \: x \:  =  \lambda \:  + 2 \\  \\  \implies \star \sf{  \: y - 2 =  -  \lambda \:  \: \:   ,\: y \:  = 2 -  \lambda \: } \\  \\  \implies \star \sf{z \:  - 3  =  - 2 \lambda \:  \: , \: z = 3 - 2 \lambda} \\  \\ \sf{ \: k ( \lambda + 2 \:, 2 -  \lambda \:,  \:  \: 3 - 2 \lambda \: )}

Now , substitute these values in the give plane ,

 \rightarrow \small \sf{ 2( \lambda + 2) - (2 -  \lambda) + 3 - 2 \lambda  - 4 = 0} \\  \\  \rightarrow \sf{2 \lambda + 4 - 2 +  \lambda - 2 \lambda - 1 = 0} \\  \\  \rightarrow \boxed{  \lambda \:  = -  1}

Put the value of lambda in K

 \implies \: ( \: 1  \:,  \: \:3 \: , \: 5)

Required equation of line have direction ratios m ' and passing through K ( 1,3,5)

Therefore equation of line is ,

 \rightarrow \boxed{ \sf{ \frac{x - 1}{3}  =  \frac{y - 3}{5}  =  \frac{z -5 }{ - 1}} }

Similar questions